Featured Research

from universities, journals, and other organizations

Lessons to be learned from nature in photosynthesis

Date:
September 23, 2011
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
Lessons to be learned from nature could lead to the development of an artificial version of photosynthesis that would provide us with an absolutely clean and virtually inexhaustible energy source, say researchers.

Through the miracle of photosynthesis, plants absorb sunlight in their leaves and convert the photonic energy into chemical energy that is stored as sugars in the plants' biomass.
Credit: Photo by Roy Kaltschmidt, Berkeley Lab

Photosynthesis is one of nature's finest miracles. Through the photosynthetic process, green plants absorb sunlight in their leaves and convert the photonic energy into chemical energy that is stored as sugars in the plants' biomass. If we can learn from nature and develop an artificial version of photosynthesis we would have an energy source that is absolutely clean and virtually inexhaustible.

"Solar energy is forecasted to provide a significant fraction of the world's energy needs over the next century, as sunlight is the most abundant source of energy we have at our disposal," says Graham Fleming, Vice Chancellor for Research at the University of California (UC) Berkeley who holds a joint appointment with Lawrence Berkeley National Laboratory (Berkeley Lab). "However, to utilize solar energy harvested from sun¬light efficiently we must understand and improve both the effective cap¬ture of photons and the transfer of electronic excitation energy."

Fleming, a physical chemist and authority on the quantum phenomena that underlie photosynthesis, is one of four international co-authors of a paper in Nature Chemistry, entitled "Lessons from nature about solar light harvesting." The other co-authors are Gregory Scholes, of the University of Toronto, Alexandra Olaya-Castro, of London's University College, and Rienk van Grondelle, of the University of Amsterdam. The paper describes the principles behind various natural antenna complexes and explains what research needs to be done for the design of effective artificial versions.

Solar-based energy production starts with the harvesting of the photons in sunlight by the molecules in antenna complexes. Energy from the photons excites or energizes electrons in these light-absorbing molecules and this excitation energy is subsequently transferred to suitable acceptor molecular complexes. In natural photosynthesis, these antenna complexes consist of light-absorbing molecules called "chromophores," and the captured solar energy is directed to chemical reaction centers -- a process that is completed within 10-to-100 picoseconds (a picosecond is one trillionth of second).

"In solar cells made from organic film, this brief timescale constrains the size of the chromophore arrays and how far excitation energy can travel," Fleming says. "Therefore energy-transfer needs and antenna design can make a significant difference to the efficiency of an artificial photosynthetic system."

Scientists have been studying how nature has mastered the efficient capture and near instantaneous transfer of the sun's energy for more than a century, and while important lessons have been learned that can aid the design of optimal synthetic sys¬tems, Fleming and his co-authors say that some of nature's design principles are not easily applied using current chemical synthesis procedures. For example, the way in which light harvesting is optimized through the organization of chromophores and the tuning of their excitation energy is not easily replicated. Also, the discovery by Fleming and his research group that the phenomenon of quantum coherence is involved in the transport of electronic excitation energy presents what the authors say is a "challenge to our understanding of chemical dynamics."

In their paper, Fleming and his international colleagues say that a clear frame¬work exists for the design and synthesis of an effective antenna unit for future artificial photosynthesis systems providing several key areas of research are addressed. First, chromophores with large absorption strengths that can be conveniently incorporated into a synthetic protocol must be developed. Second, theoretical studies are needed to determine the optimal arrangement patterns of chromophores. Third, experiments are needed to elucidate the role of the environment on quantum coherence and the transport of electronic excitation energy. Experiments are also needed to determine how light-harvesting regulation and photo protection can be introduced and made reasonably sophisticated in response to incident light levels.

"There remains a number of outstanding questions about the mechanistic details of energy transfer, especially concerning how the electronic system interacts with the environment and what are the precise consequences of quantum coherence," Fleming says. "However, if the right research effort is made, perhaps based on synthetic biology, artificial photosynthetic systems should be able to produce energy on a commercial scale within the next 20 years."

Support for this work was provided by the U.S. Department of Energy (DOE) Office of Science, the Natural Sciences and Engineering Research Council of Canada, the Engineering and Physical Sciences Research Council of the United Kingdom, and the Netherlands Organization for Scientific Research, and the European Research Council.


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gregory D. Scholes, Graham R. Fleming, Alexandra Olaya-Castro, Rienk van Grondelle. Lessons from nature about solar light harvesting. Nature Chemistry, 2011; 3 (10): 763 DOI: 10.1038/nchem.1145

Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "Lessons to be learned from nature in photosynthesis." ScienceDaily. ScienceDaily, 23 September 2011. <www.sciencedaily.com/releases/2011/09/110923130115.htm>.
DOE/Lawrence Berkeley National Laboratory. (2011, September 23). Lessons to be learned from nature in photosynthesis. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2011/09/110923130115.htm
DOE/Lawrence Berkeley National Laboratory. "Lessons to be learned from nature in photosynthesis." ScienceDaily. www.sciencedaily.com/releases/2011/09/110923130115.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) — Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Nature Offers Key Lessons on Harvesting Solar Power, Say Chemists

Sep. 23, 2011 — Clean solutions to human energy demands are essential to our future. While sunlight is the most abundant source of energy at our disposal, we have yet to learn how to capture, transfer and store ... read more
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins