Featured Research

from universities, journals, and other organizations

Wind power: Long-term wind speed changes estimated

Date:
September 27, 2011
Source:
CSIRO Australia
Summary:
Scientists are taking the first steps to improve estimates of long-term wind speed changes for the fast-growing wind energy sector. The research is intended to identify the risks for generators in a changing climate.

Improving estimates of long-term wind speed changes for the fast-growing wind energy sector will help reduce risk for generators in a changing climate.
Credit: Gregory Heath, CSIRO

Scientists are taking the first steps to improve estimates of long-term wind speed changes for the fast-growing wind energy sector. The research is intended to identify the risks for generators in a changing climate.

Some recent international studies have shown a decrease in wind speeds in several parts of the globe, including across Australia. However, more recent results by CSIRO show that Australia's average wind speed is actually increasing.

Scientists at CSIRO Marine and Atmospheric Research have analysed wind speed observations to understand the causes of variations in near-surface wind and explore long-term wind speed trends over Australia.

"We have a good picture of wind energy availability across Australia from previous CSIRO wind mapping and, with the growth of wind farms, there is an emerging need to understand how climate change can affect the wind resource," says Dr Alberto Troccoli, lead author of the paper published in the Journal of Climate.

"Wind power production is expected to increase greatly over the coming years and the associated electricity system will be subject to variations of several hundred megawatts -- depending on wind availability.

"The ability to quantify with accuracy these long-term variations is essential to the sector from an economic point of view," he said.

The conjunction of energy and meteorology is the subject of an international conference on the Gold Coast in November.

Dr Troccoli said that averaged across Australia wind speeds measured at a height of 10 metres had increased by 0.69% per annum compared to a decline of 0.36% per annum for wind speeds measured at 2m height, both over the 1989-2006 period.

Accurate estimates of long-term trends of wind speed provide a useful indicator for circulation changes in the atmosphere and are invaluable for the planning and financing of sectors such as wind energy.

"The potential for increasing the efficiency of energy operations by using quality weather and climate information is therefore apparent and one of the first steps is the standardisation of wind recording stations.

" Wind observations, like other meteorological variables, are sensitive to the conditions in which they are observed -- for example, where the instrumentation sits relative to topographical features, vegetation and urban developments."

The team found that the wind speed trends over Australia are sensitive to the height of the station, with winds measured at 10m displaying an opposite and positive trend to that reported by a previous study which analysed only winds measured at 2m.

Light winds measured at 10m, a height that represents better the free atmospheric flow, tend to increase more rapidly than the average, whereas strong winds increase less rapidly than the average winds. Light and strong wind measured at a height of 2m tend to vary in line with the average winds.

"Our work shows a number of challenges with the consistency of the observations during their period of operation and between sites across Australia.

"The quality of future wind observational datasets will depend on having consistency between sites, particularly with respect to measurement procedure, maintenance of instrumentation, and detailed records of the site history," Dr Troccoli said.

He said the work has implications for a variety of sectors beyond wind energy including building construction, coastal erosion, and evaporation rates.

The research was partly funded by a grant from the Australian Climate Change Science Program supported by the Australian Department of Climate Change and Energy Efficiency.


Story Source:

The above story is based on materials provided by CSIRO Australia. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alberto Troccoli, Karl Muller, Peter Coppin, Robert Davy, Chris Russell, Annette L. Hirsch. Long-term wind speed trends over Australia. Journal of Climate, 2011; 110715095226000 DOI: 10.1175/2011JCLI4198.1

Cite This Page:

CSIRO Australia. "Wind power: Long-term wind speed changes estimated." ScienceDaily. ScienceDaily, 27 September 2011. <www.sciencedaily.com/releases/2011/09/110926095331.htm>.
CSIRO Australia. (2011, September 27). Wind power: Long-term wind speed changes estimated. ScienceDaily. Retrieved September 14, 2014 from www.sciencedaily.com/releases/2011/09/110926095331.htm
CSIRO Australia. "Wind power: Long-term wind speed changes estimated." ScienceDaily. www.sciencedaily.com/releases/2011/09/110926095331.htm (accessed September 14, 2014).

Share This



More Earth & Climate News

Sunday, September 14, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Conservationists Face Uphill PR Battle With New Shark Rules

Conservationists Face Uphill PR Battle With New Shark Rules

Newsy (Sep. 14, 2014) — New conservation measures for shark fishing face an uphill PR battle in the fight to slow shark extinction. Video provided by Newsy
Powered by NewsLook.com
Pakistan's 'killer Mountain' Fails to Draw Tourists After Attack

Pakistan's 'killer Mountain' Fails to Draw Tourists After Attack

AFP (Sep. 12, 2014) — In June 2013, 10 foreign mountaineers and their guide were murdered on Nanga Parbat, an iconic peak that stands at 8,126m tall in northern Pakisan. Duration: 02:34 Video provided by AFP
Powered by NewsLook.com
Solar Storm To Hit This Weekend, Scientists Not Worried

Solar Storm To Hit This Weekend, Scientists Not Worried

Newsy (Sep. 11, 2014) — Two solar flares which erupted in our direction this week will arrive this weekend. The resulting solar storm will be powerful but not dangerous. Video provided by Newsy
Powered by NewsLook.com
The Ozone Layer Is Recovering, But It's Not All Good News

The Ozone Layer Is Recovering, But It's Not All Good News

Newsy (Sep. 11, 2014) — The Ozone layer is recovering thickness! Hooray! But in helping its recovery, we may have also helped put more greenhouse gases out there. Hooray? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:  

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile iPhone Android Web
    Follow Facebook Twitter Google+
    Subscribe RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins