Featured Research

from universities, journals, and other organizations

Pathways of pain-blocking medications modeled by computer

Date:
October 3, 2011
Source:
American Institute of Physics
Summary:
Although local anesthetics are commonly used, in many cases scientists still don't understand the finer points of how the drugs act on cell membranes. A new computer model may help by showing how readily cell membranes made up of different compounds absorb anesthetics.

Although local anesthetics are commonly used, in many cases scientists still don't understand the finer points of how the drugs act on cell membranes. A new computer model may help by showing how readily cell membranes made up of different compounds absorb anesthetics.

Related Articles


Benzocaine, a commonly used local anesthetic, may more easily wiggle into a cell's membrane when the membrane is made up of compounds that carry a negative charge, a new study shows. The finding could help scientists piece together a more complete understanding of the molecular-level mechanisms behind pain-blocking medicines, possibly leading to their safer and more effective use.

Most scientists believe that local anesthetics prevent pain signals from propagating to the central nervous system by blocking nerve cells' sodium channels, but exactly how the medicines accomplish this feat remains vague. Since the solubility of anesthetics in the cell membrane can affect the medicine's potency, some scientists have hypothesized that certain anesthetics may block the action of sodium channels indirectly, by entering the cell membrane and jostling the channels into a new shape that prevents ion flow.

With the aim of further investigating such complex processes, scientists from the Universidad Politecnica de Cartagena in Spain and the Universidad Nacional de San Luis in Argentina have created a computer model that calculates the probability of molecules of benzocaine entering a cell's membrane, based on the composition of the membrane.

As reported in the AIP's Journal of Chemical Physics, the model predicts that membranes made of a large percentage of DPPS, a negatively charged phospholipid component of cells, present less of a barrier to benzocaine molecules than membranes made mostly of DPPC, a neutral phospholipid. DPPS is normally found as one of the main components of cell membranes in the central nervous system, as well as a component of the inner side of membranes in other humans cells.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. J. Lopez Cascales, S. D. Oliveira Costa, R. D. Porasso. Thermodynamic study of benzocaine insertion into different lipid bilayers. Journal of Chemical Physics, 2011; (accepted)

Cite This Page:

American Institute of Physics. "Pathways of pain-blocking medications modeled by computer." ScienceDaily. ScienceDaily, 3 October 2011. <www.sciencedaily.com/releases/2011/09/110926104622.htm>.
American Institute of Physics. (2011, October 3). Pathways of pain-blocking medications modeled by computer. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2011/09/110926104622.htm
American Institute of Physics. "Pathways of pain-blocking medications modeled by computer." ScienceDaily. www.sciencedaily.com/releases/2011/09/110926104622.htm (accessed October 24, 2014).

Share This



More Health & Medicine News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com
Ebola Fears Keep Guinea Hospitals Empty

Ebola Fears Keep Guinea Hospitals Empty

AP (Oct. 23, 2014) Fears of Ebola are keeping doctors and patients alike away from hospitals in the West African nation of Guinea. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Despite Rising Death Toll, Many Survive Ebola

Despite Rising Death Toll, Many Survive Ebola

AP (Oct. 23, 2014) The family of a Dallas nurse infected with Ebola in the US says doctors can no longer detect the virus in her. Despite the mounting death toll in West Africa, there are survivors there too. (Oct. 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins