Featured Research

from universities, journals, and other organizations

Engineers 'cook' promising new heat-harvesting nanomaterials in microwave oven

Date:
September 30, 2011
Source:
Rensselaer Polytechnic Institute
Summary:
Waste heat is a byproduct of nearly all electrical devices and industrial processes, from driving a car to flying an aircraft or operating a power plant. Engineering researchers have developed new nanomaterials that could lead to techniques for better capturing and putting this waste heat to work. The key ingredients for making marble-sized pellets of the new material are aluminum and a common, everyday microwave oven.

Engineering researchers at Rensselaer Polytechnic Institute have developed new thermoelectric nanomaterials, pictured above, that could lead to techniques for better capturing and putting this waste heat to work. The key ingredients for making marble-sized pellets of the new material are aluminum and a common, everyday microwave oven.
Credit: Rensselaer/Ramanath

Waste heat is a byproduct of nearly all electrical devices and industrial processes, from driving a car to flying an aircraft or operating a power plant. Engineering researchers at Rensselaer Polytechnic Institute have developed new nanomaterials that could lead to techniques for better capturing and putting this waste heat to work. The key ingredients for making marble-sized pellets of the new material are aluminum and a common, everyday microwave oven.

Harvesting electricity from waste heat requires a material that is good at conducting electricity but poor at conducting heat. One of the most promising candidates for this job is zinc oxide, a nontoxic, inexpensive material with a high melting point. While nanoengineering techniques exist for boosting the electrical conductivity of zinc oxide, the material's high thermal conductivity is a roadblock to its effectiveness in collecting and converting waste heat. Because thermal and electrical conductivity are related properties, it's very difficult to decrease one without also diminishing the other.

However, a team of researchers led by Ganpati Ramanath, professor in the Department of Materials Science and Engineering at Rensselaer, in collaboration with the University of Wollongong, Australia, have demonstrated a new way to decrease zinc oxide's thermal conductivity without reducing its electrical conductivity. The innovation involves adding minute amounts of aluminum to zinc oxide, and processing the materials in a microwave oven. The process is adapted from a technique invented at Rensselaer by Ramanath, graduate student Rutvik Mehta, and Theo Borca-Tasciuc, associate professor in the Department of Mechanical, Aerospace, and Nuclear Engineering (MANE). This work could open the door to new technologies for harvesting waste heat and creating highly energy efficient cars, aircraft, power plants, and other systems.

"Harvesting waste heat is a very attractive proposition, since we can convert the heat into electricity and use it to power a device -- like in a car or a jet -- that is creating the heat in the first place. This would lead to greater efficiency in nearly everything we do and, ultimately, reduce our dependence on fossil fuels," Ramanath said. "We are the first to demonstrate such favorable thermoelectric properties in bulk-sized high-temperature materials, and we feel that our discovery will pave the way to new power harvesting devices from waste heat."

Results of the study are detailed in a paper published recently by the journal Nano Letters.

To create the new nanomaterial, researchers added minute quantities of aluminum to shape-controlled zinc oxide nanocrystals, and heated them in a $40 microwave oven. Ramanath's team is able to produce several grams of the nanomaterial in a matter of few minutes, which is enough to make a device measuring a few centimeters long. The process is less expensive and more scalable than conventional methods and is environmentally friendly, Ramanath said. Unlike many nanomaterials that are fabricated directly onto a substrate or surface, this new microwave method can produce pellets of nanomaterials that can be applied to different surfaces. These attributes, together with low thermal conductivity and high electrical conductivity, are highly suitable for heat harvesting applications.

"Our discovery could be key to overcoming major fundamental challenges related to working with thermoelectric materials," said project collaborator Borca-Tasciuc. "Moreover, our process is amenable to scaling for large-scale production. It's really amazing that a few atoms of aluminum can conspire to give us thermoelectric properties we're interested in."

This work was a collaborative effort between Ramanath and Shi Xue Dou, a professor at the Institute for Superconducting and Electronic Materials at the University of Wollogong, Australia. Wollongong graduate student Priyanka Jood carried out the work together with Rensselaer graduate students Rutvik Mehta and Yanliang Zhang during Jood's one-year visit to Rensselaer. Co-authors of the paper are Richard W. Siegel, the Robert W. Hunt Professor of Materials Science and Engineering; along with professors Xiaolin Wang and Germanas Peleckis at the University of Wollongong.

This research is funded by support from IBM through the Rensselaer Nanotechnology Center; S3TEC, an Energy Frontier Research Center funded by the U.S. Department of Energy (DoE) Office of Basic Energy Sciences; the Australian Research Council (ARC); and the University of Wollongong.


Story Source:

The above story is based on materials provided by Rensselaer Polytechnic Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Priyanka Jood, Rutvik J. Mehta, Yanliang Zhang, Germanas Peleckis, Xiaolin Wang, Richard W. Siegel, Theo Borca-Tasciuc, Shi Xue Dou, Ganpati Ramanath. Al-Doped Zinc Oxide Nanocomposites with Enhanced Thermoelectric Properties. Nano Letters, 2011; 110926094633005 DOI: 10.1021/nl202439h

Cite This Page:

Rensselaer Polytechnic Institute. "Engineers 'cook' promising new heat-harvesting nanomaterials in microwave oven." ScienceDaily. ScienceDaily, 30 September 2011. <www.sciencedaily.com/releases/2011/09/110929122802.htm>.
Rensselaer Polytechnic Institute. (2011, September 30). Engineers 'cook' promising new heat-harvesting nanomaterials in microwave oven. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2011/09/110929122802.htm
Rensselaer Polytechnic Institute. "Engineers 'cook' promising new heat-harvesting nanomaterials in microwave oven." ScienceDaily. www.sciencedaily.com/releases/2011/09/110929122802.htm (accessed July 24, 2014).

Share This




More Matter & Energy News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com
Boeing Ups Outlook on 52% Profit Jump

Boeing Ups Outlook on 52% Profit Jump

Reuters - Business Video Online (July 23, 2014) Commercial aircraft deliveries rose seven percent at Boeing, prompting the aerospace company to boost full-year profit guidance- though quarterly revenues missed analyst estimates. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Car Market on the Rebound?

Europe's Car Market on the Rebound?

Reuters - Business Video Online (July 23, 2014) Daimler kicks off a round of second-quarter earnings results from Europe's top carmakers with a healthy set of numbers - prompting hopes that stronger sales in Europe will counter weakness in emerging markets. Hayley Platt reports. Video provided by Reuters
Powered by NewsLook.com
9/11 Commission Members Warn of Terror "fatigue" Among American Public

9/11 Commission Members Warn of Terror "fatigue" Among American Public

Reuters - US Online Video (July 22, 2014) Ten years after releasing its initial report, members of the 9/11 Commission warn of the "waning sense of urgency" in combating terrorists attacks. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins