Featured Research

from universities, journals, and other organizations

Cosmic weight watching reveals black hole-galaxy history

Date:
October 3, 2011
Source:
Max-Planck-Gesellschaft
Summary:
Using state-of-the-art technology and sophisticated data analysis tools, a team of astronomers has developed a new and powerful technique to directly determine the mass of an active galaxy at a distance of nearly 9 billion light-years from Earth. This pioneering method promises a new approach for studying the co-evolution of galaxies and their central black holes. First results indicate that for galaxies, the best part of cosmic history was not a time of sweeping changes.

Colors in this image of the galaxy J090543.56+043347.3 indicate whether there is gas moving towards us or away from us, and at what speed. Using this information, the researchers reconstructed the galaxy's dynamical mass. The star shape indicates the position of the galaxy's active nucleus; the surrounding contour lines indicate brightness levels or light emitted by the nucleus. Dark blue pixels indicate gas moving towards us at a speed of 250 km/s, dark red pixels gas moving away from us at 350 km/s.
Credit: K. J. Inskip/MPIA

Using state-of-the-art technology and sophisticated data analysis tools, a team of astronomers from the Max Planck Institute for Astronomy has developed a new and powerful technique to directly determine the mass of an active galaxy at a distance of nearly 9 billion light-years from Earth. This pioneering method promises a new approach for studying the co-evolution of galaxies and their central black holes. First results indicate that for galaxies, the best part of cosmic history was not a time of sweeping changes.

Related Articles


One of the most intriguing developments in astronomy over the last few decades is the realization that not only do most galaxies contain central black holes of gigantic size, but also that the mass of these central black holes are directly related to the mass of their host galaxies. This correlation is predicted by the current standard model of galaxy evolution, the so-called hierarchical model, as astronomers from the Max Planck Institute for Astronomy have recently shown.

When astronomers look out to greater and greater distances, they look further and further into the past. Investigating this black hole-galaxy mass correlation at different distances, and thus at different times in cosmic history, allows astronomers to study galaxy and black hole evolution in action.

For galaxies further away than 5 billion light-years (corresponding to a redshift of z > 0.5), such studies face considerable difficulties. The typical objects of study are so-called active galaxies, and there are well-established methods to estimate the mass of such a galaxy's central black hole. It is the galaxy's mass itself that is the challenge: At such distances, standard methods of estimating a galaxy's mass become exceedingly uncertain or fail altogether.

Now, a team of astronomers from the Max Planck Institute for Astronomy, led by Dr Katherine Inskip, has, for the first time, succeeded in directly "weighing" both a galaxy and its central black hole at such a great distance using a sophisticated and novel method. The galaxy, known to astronomers by the number J090543.56+043347.3 (which encodes the galaxy's position in the sky) has a distance of 8.8 billion light-years from Earth (redshift z = 1.3).

The astronomers succeeded in measuring directly the so-called dynamical mass of this active galaxy. The key idea is the following: A galaxy's stars and gas clouds orbit the galactic centre; for instance, our Sun orbits the centre of the Milky Way galaxy once every 250 million years. The stars' different orbital speeds are a direct function of the galaxy's mass distribution. Determine orbital speeds and you can determine the galaxy's total mass.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. K. J. Inskip, K. Jahnke, H.-W. Rix, G. van de Ven. Resolving the Dynamical Mass of a z ~ 1.3 Quasi-stellar Object Host Galaxy Using SINFONI and Laser Guide Star Assisted Adaptive Optics. The Astrophysical Journal, 2011; 739 (2): 90 DOI: 10.1088/0004-637X/739/2/90

Cite This Page:

Max-Planck-Gesellschaft. "Cosmic weight watching reveals black hole-galaxy history." ScienceDaily. ScienceDaily, 3 October 2011. <www.sciencedaily.com/releases/2011/09/110930071708.htm>.
Max-Planck-Gesellschaft. (2011, October 3). Cosmic weight watching reveals black hole-galaxy history. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2011/09/110930071708.htm
Max-Planck-Gesellschaft. "Cosmic weight watching reveals black hole-galaxy history." ScienceDaily. www.sciencedaily.com/releases/2011/09/110930071708.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will New A350 Help Airbus Fly?

Will New A350 Help Airbus Fly?

Reuters - Business Video Online (Dec. 22, 2014) Qatar Airways takes first delivery of Airbus' new A350 passenger jet. As Joel Flynn reports it's the planemaker's response to the Boeing 787 Dreamliner and the culmination of eight years of development. Video provided by Reuters
Powered by NewsLook.com
Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Buzz60 (Dec. 22, 2014) A BASE jumper rides a lawn chair, a shotgun, and a giant bunch of helium balloons into the sky in what seems like a country version of the movie 'Up." Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins