Featured Research

from universities, journals, and other organizations

Cell movement provides clues to aggressive breast cancer

Date:
October 4, 2011
Source:
University of Michigan Health System
Summary:
Researchers have identified a specific molecule that alters how breast cancer cells move. This affects the cells' ability to spread or metastasize to distant parts of the body, the hallmark of deadly, aggressive cancer.

Researchers from the University of Michigan Comprehensive Cancer Center have identified a specific molecule that alters how breast cancer cells move. This affects the cells' ability to spread or metastasize to distant parts of the body, the hallmark of deadly, aggressive cancer.

By looking at cells in the lab, in mice and in human tissue, as well as developing a mathematical model to predict cell movement, researchers found that the p38-gamma molecule controlled how quickly and easily a cancer cell moved. When p38-gamma was inactivated, cells flattened out and changed from fast motion to an ineffective movement.

"Normal motion is commonly seen in aggressive cancers, which is why it's very important to understand what the key switches are for this motion," says lead study author Sofia Merajver, M.D., Ph.D., scientific director of the breast oncology program at the U-M Comprehensive Cancer Center.

Results of the study appear online in Cancer Research.

Merajver's previous work found that the cancer gene RhoC promotes aggressive metastasis. In this research, her team followed the pathway back to see what controls the cells to make them so aggressive. They identified the p38 molecule, which has several different types, and found in particular p38-gamma is highly expressed in aggressive breast cancer.

The researchers modified the cells so that they inhibited p38-gamma in cell cultures and discovered the changes in shape and motion. Collaborators in the U-M College of Engineering, Ellen M. Arruda, Krishna Garikipati and their team, then developed a mathematical model to show how these changes would impact cell motion. The model predicted exactly what the researchers observed in the cell cultures.

"This gives us a more complete understanding of how aggressive breast cancer cells move and the influence of p38-gamma in particular on modifying this motion," says Merajver, professor of internal medicine at the U-M Medical School. "Cell movement is very difficult to observe, which is why mathematical modeling in oncology is valuable."

Merajver hopes this model, which can be applied to other cancer types, will improve understanding of how cells move, allowing researchers to plan better experiments to look at this function.

Identifying p38-gamma's role in breast cancer provides a strong target for potential new therapies, the researchers say. They believe it will be possible to develop a drug that targets only p38-gamma without affecting other pathways, which would make it more tolerable for patients.

"We do have targeted therapies in the clinic, but the total burden of disease that they ameliorate is still relatively minimal. The reasons may not necessarily be that they are not good drugs, but simply that we don't understand how they work, because we don't understand the biology in sufficient detail. That's why studies like this are so important in advancing drug development," Merajver says.


Story Source:

The above story is based on materials provided by University of Michigan Health System. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. T. Rosenthal, H. Iyer, S. Escudero, L. Bao, Z. Wu, A. C. Ventura, C. G. Kleer, E. M. Arruda, K. Garikipati, S. D. Merajver. p38 promotes breast cancer cell motility and metastasis through regulation of RhoC GTPase, cytoskeletal architecture, and a novel leading edge behavior. Cancer Research, 2011; DOI: 10.1158/0008-5472.CAN-11-1291

Cite This Page:

University of Michigan Health System. "Cell movement provides clues to aggressive breast cancer." ScienceDaily. ScienceDaily, 4 October 2011. <www.sciencedaily.com/releases/2011/10/111003132447.htm>.
University of Michigan Health System. (2011, October 4). Cell movement provides clues to aggressive breast cancer. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2011/10/111003132447.htm
University of Michigan Health System. "Cell movement provides clues to aggressive breast cancer." ScienceDaily. www.sciencedaily.com/releases/2011/10/111003132447.htm (accessed April 23, 2014).

Share This



More Health & Medicine News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins