Featured Research

from universities, journals, and other organizations

Evidence found for the genetic basis of autism: Models of autism show that gene copy number controls brain structure and behavior

Date:
October 6, 2011
Source:
Cold Spring Harbor Laboratory
Summary:
Scientists have discovered that one of the most common genetic alterations in autism -- deletion of a 27-gene cluster on chromosome 16 -- causes autism-like features. By generating mouse models of autism using a technique known as chromosome engineering, researchers provide the first functional evidence that inheriting fewer copies of these genes leads to features resembling those used to diagnose children with autism.

This three-dimensional representation of the mouse brain highlights eight regions (shown with different colors) affected by 16.p11.2 deletion.
Credit: Image courtesy of Mills@CSHL

Scientists at Cold Spring Harbor Laboratory (CSHL) have discovered that one of the most common genetic alterations in autism -- deletion of a 27-gene cluster on chromosome 16 -- causes autism-like features. By generating mouse models of autism using a technique known as chromosome engineering, CSHL Professor Alea Mills and colleagues provide the first functional evidence that inheriting fewer copies of these genes leads to features resembling those used to diagnose children with autism.

The study appears in the Proceedings of the National Academy of Sciences in the early online edition during the week of October 3.

"Children normally inherit one copy of a gene from each parent. We had the tools to see whether copy number changes found in kids with autism were causing the syndrome," explains Mills. In 2007, Professor Michael Wigler, also at CSHL, revealed that some children with autism have a small deletion on chromosome 16, affecting 27 genes in a region of our genomes referred to as 16p11.2. The deletion -- which causes children to inherit only a single copy of the 27-gene cluster -- is one of the most common copy number variations (CNVs) associated with autism.

"The idea that this deletion might be causing autism was exciting," says Mills. "So we asked whether clipping out the same set of genes in mice would have any effect."

After engineering mice that had a chromosome defect corresponding to the human 16p11.2 deletion found in autism, Mills and her team analyzed these models for a variety of behaviors, as the clinical features of autism often vary widely from patient to patient, even within the same family.

"Mice with the deletion acted completely different from normal mice," explains Guy Horev, a Postdoctoral Fellow in the Mills laboratory and first author of the study. These mice had a number of behaviors characteristic of autism: hyperactivity, difficulty adapting to a new environment, sleeping deficits, and restricted, repetitive behaviors.

Interestingly, mice that had been engineered to carry an extra copy, or duplication, of the 16p11.2 region did not have these characteristics, but instead, had the reciprocal behaviors. For each behavior, the deletion had a more dire consequence than the duplication, indicating that gene loss was more severe. This might explain why 16p11.2 duplications are detected much more frequently than deletions within the human population, and why patients with 16p11.2 deletions tend to be diagnosed earlier than those with duplications.

The mouse models also revealed a potential link between 16p11.2 deletion and survival, as about half the mice died following birth. Whether these findings extend to the human population might be answered by future studies that investigate the link between this deletion and unexplained cases of infant death.

The researchers also used MRI to identify specific regions of the brain that were altered in the autism models, revealing that eight different parts of the brain were affected. The group is now working to identify which gene or group of genes among the 27 that are located within the deleted region is responsible for the behaviors and brain alterations observed.

"Alea Mills has created a valuable resource for everyone engaged in autism research. The technical skill is extraordinary in creating mouse models bearing a human genetic variant that has been associated with autism," says Dr. Gerald Fischbach, Director of Life Sciences and Simons Foundation Autism Research Initiative (SFARI).

These mice will be invaluable for pinpointing the genetic basis of autism and for elucidating how these alterations affect the brain. They could also be used for inventing ways to diagnose children with autism before they develop the full-blown syndrome, as well as for designing clinical interventions.

Collaborators on this work include a group of MRI specialists led by Dr. Mark Henkelman at the Hospital of Sick Children in Toronto. This study was funded by the Simons Foundation Autism Research Initiative (SFARI).


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Guy Horev, Jacob Ellegood, Jason P. Lerch, Young-Eun E. Son, Lakshmi Muthuswamy, Hannes Vogel, Abba M. Krieger, Andreas Buja, R. Mark Henkelman, Michael Wigler, and Alea A. Mills. Dosage-dependent phenotypes in models of 16p11.2 lesions found in autism. Proceedings of the National Academy of Sciences, October 3, 2011 DOI: 10.1073/pnas.1114042108

Cite This Page:

Cold Spring Harbor Laboratory. "Evidence found for the genetic basis of autism: Models of autism show that gene copy number controls brain structure and behavior." ScienceDaily. ScienceDaily, 6 October 2011. <www.sciencedaily.com/releases/2011/10/111003151819.htm>.
Cold Spring Harbor Laboratory. (2011, October 6). Evidence found for the genetic basis of autism: Models of autism show that gene copy number controls brain structure and behavior. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/10/111003151819.htm
Cold Spring Harbor Laboratory. "Evidence found for the genetic basis of autism: Models of autism show that gene copy number controls brain structure and behavior." ScienceDaily. www.sciencedaily.com/releases/2011/10/111003151819.htm (accessed April 17, 2014).

Share This



More Mind & Brain News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Couples Who Sleep Less Than An Inch Apart Might Be Happiest

Couples Who Sleep Less Than An Inch Apart Might Be Happiest

Newsy (Apr. 16, 2014) A new study by British researchers suggests couples' sleeping positions might reflect their happiness. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins