Featured Research

from universities, journals, and other organizations

Scientists find mechanism that leads to drug resistance in bacteria causing melioidosis

Date:
October 4, 2011
Source:
Wellcome Trust
Summary:
Researchers have identified a novel mechanism whereby the organism Burkholderia pseudomallei -- the cause of melioidosis, a neglected tropical infectious disease -- develops resistance to ceftazidime, the standard antibiotic treatment. The change also makes the drug-resistant bacterium difficult to detect.

Researchers in South East Asia have identified a novel mechanism whereby the organism Burkholderia pseudomallei -- the cause of melioidosis, a neglected tropical infectious disease -- develops resistance to ceftazidime, the standard antibiotic treatment. The change also makes the drug-resistant bacterium difficult to detect.

B. pseudomallei is found in water and soil predominately in tropical climates and especially in South East Asia. It can infect both humans and animals and causes melioidosis. The disease often occurs in people who have underlying diseases such as type 2 diabetes or renal disease. Symptoms range from relatively mild to severe, and the mortality rate in Asia is as high as four out of ten cases.

Infection is treated using ceftazidime, a third-generation cephalosporin β-lactam antibiotic, which is a derivative of penicillin. This drug is often required for several weeks, during which the bacteria may develop resistance to it. Now, in a paper published in the Proceedings of the National Academy of Science, researchers from the Wellcome Trust-Mahidol University-Oxford Tropical Medicine Research Programme in Bangkok, Thailand, and the University of Cambridge, in collaboration with Colorado State University and Genome Institute of Singapore, have identified how the bacteria develop this resistance.

By comparing the genetic make-up of isolates taken from six patients that had become resistant to ceftazidime against their original infecting ceftazidime-susceptible strain, the researchers found a common, large-scale genomic loss involving at least 49 genes that is thought to arise spontaneously as the bacteria replicate and mutate. The researchers were able to demonstrate that a specific gene within this region was the cause of the drug resistance. This gene provides the genetic 'code' to create a protein that is important to bacterial cell division and that is normally the target for ceftazidime.

The researchers also found that these mutated forms of B. pseudomallei would not grow in common laboratory cultures, including bottles that are normally used to culture blood from people with bacterial infections, as well as the routine culture media used in the diagnostic laboratory. This makes the detection of the drug-resistant forms very difficult. Consequently, patients carrying this strain could continue to be treated with drugs that have become ineffective.

Professor Sharon Peacock, the team lead and a professor of clinical microbiology at both Mahidol University and the University of Cambridge, said: "Clinical treatment failure occurs in as many as one in six patients receiving ceftazidime for melioidosis. The mechanism described here represents the first explanation for failure of ceftazidime therapy, may be a frequent but undetected event, and provides us with an opportunity to seek ways to increase detection of these variants."

Dr Narisara Chantratita led the work undertaken at Mahidol University. She was awarded a Wellcome Trust Intermediate Fellowship in Public Health and Tropical Medicine in 2009. This scheme provides support to researchers from low- and middle-income countries.

Combating infectious diseases is one the strategic priorities of the Wellcome Trust. Much of this work is carried out at a local level in regions where disease is endemic. This includes several major overseas programmes, including the Wellcome Trust-Mahidol University-Oxford Tropical Medicine Research Programme.

Commenting on the research, Professor Danny Altmann, Head of Pathogens, Immunology and Population Health at the Wellcome Trust, said: "The development of drug resistance is a major concern for doctors, particularly in low and middle income countries. This study helps us understand how resistance can occur and can hopefully lead to better detection and treatment of drug-resistant forms of melioidosis, a life-threatening tropical disease."


Story Source:

The above story is based on materials provided by Wellcome Trust. Note: Materials may be edited for content and length.


Cite This Page:

Wellcome Trust. "Scientists find mechanism that leads to drug resistance in bacteria causing melioidosis." ScienceDaily. ScienceDaily, 4 October 2011. <www.sciencedaily.com/releases/2011/10/111003151830.htm>.
Wellcome Trust. (2011, October 4). Scientists find mechanism that leads to drug resistance in bacteria causing melioidosis. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2011/10/111003151830.htm
Wellcome Trust. "Scientists find mechanism that leads to drug resistance in bacteria causing melioidosis." ScienceDaily. www.sciencedaily.com/releases/2011/10/111003151830.htm (accessed April 23, 2014).

Share This



More Health & Medicine News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com
How to Master Motherhood With the Best Work/Life Balance

How to Master Motherhood With the Best Work/Life Balance

TheStreet (Apr. 22, 2014) In the U.S., there are more than 11 million couples trying to conceive at any given time. From helping celebrity moms like Bethanny Frankel to ordinary soon-to-be-moms, TV personality and parenting expert, Rosie Pope, gives you the inside scoop on mastering motherhood. London-born entrepreneur Pope is the creative force behind Rosie Pope Maternity and MomPrep. She explains why being an entrepreneur offers the best life balance for her and tips for all types of moms. Video provided by TheStreet
Powered by NewsLook.com
Catching More Than Fish: Ugandan Town Crippled by AIDS

Catching More Than Fish: Ugandan Town Crippled by AIDS

AFP (Apr. 22, 2014) The village of Kasensero on the shores of Lake Victoria was where HIV-AIDS was first discovered in Uganda. Its transient population of fishermen and sex workers means the nationwide programme to combat the virus has had little impact. Duration: 02:30 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins