Featured Research

from universities, journals, and other organizations

Rebooting the system: Immune cells repair damaged lung tissues after flu infection

Date:
October 5, 2011
Source:
University of Pennsylvania School of Medicine
Summary:
There's more than one way to mop up after a flu infection. Now, researchers report that a previously unrecognized population of lung immune cells orchestrate the body's repair response following flu infection.

Immuno-fluorescence staining in mouse inflamed lung tissue showing activated airway epithelial cells (green), infiltrating macrophages (red) and cell nuclei (blue).
Credit: Image courtesy of Meera Nair, Laurel Monticelli and David Artis, Perelman School of Medicine, University of Pennsylvania

There's more than one way to mop up after a flu infection. Now, researchers from the Perelman School of Medicine at the University of Pennsylvania report in Nature Immunology that a previously unrecognized population of lung immune cells orchestrate the body's repair response following flu infection.

In addition to the looming threat of a deadly global pandemic, an estimated 200,000 people are hospitalized because of the flu and 36,000 die each year in the US, according to the Centers for Disease Control. However, many influenza-related deaths are not a direct result of the invading virus but instead are linked to the body's failure to effectively repair and restore lung tissues after it has been damaged by the virus. However, the processes that promote lung tissue repair have remained elusive.

In this new report, David Artis, PhD, associate professor of Microbiology; Laurel Monticelli, a PhD student in the Artis lab; and colleagues observed that flu-infected mice without a population of immune cells called innate lymphoid cells suffered poor lung function leading to eventual death. The team also found that those innate lymphoid cells produced a growth factor called amphiregulin. Infusion of innate lymphoid cells or amphiregulin to the lungs of infected mice normalized lung function, suggesting that the activation of these cells is central to tissue repair at lung surfaces.

Notably, the researchers found that innate lymphoid cells don't attack the virus per se, as other immune cells do; rather, they spur the proliferation of cells that line the lung, which aids in wound healing of the lung tissues that have been severely damaged as a result of the viral infection.

Based on these findings, this lung cell population could also promote wound healing following other respiratory infections and possibly drive tissue remodeling in situations of non-infectious lung injury and inflammation such as asthma, explains first author Monticelli.

In order to extend these studies to human health, Artis and his team collaborated with researchers at Columbia University to identify a population of innate lymphoid cells that is resident in healthy human lung tissue similar to the cells found in mice. These findings raise the possibility that these cells may also orchestrate lung tissue repair in humans and that targeting activation of innate lymphoid cells through amphiregulin or other proteins may speed tissue recovery in patients suffering from respiratory illnesses.

"The identification of innate lymphoid cells in the lung, and new studies from multiple research groups illuminating their previously unrecognized functions in diverse disease processes could help in the design of new drugs to prevent or better fight many common infectious or inflammatory diseases," concludes Artis.

In addition to Artis and Monticelli, co-authors include Gregory F. Sonnenberg, Michael C. Abt, Theresa Alenghat, Carly G.K. Ziegler, Travis A. Doering, Jill M. Angelosanto, Brian J. Laidlaw, Joshua M. Diamond, Ronald G. Collman and E. John Wherry, all from Penn; Cliff Y. Yang and Ananda W. Goldrath from the University of California, San Diego; and Taheri Sathaliyawala, Masaru Kubota, Damian Turner and Donna L. Farber from Columbia University.

The research was funded by the National Institute Allergy and Infectious Diseases.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Laurel A Monticelli, Gregory F Sonnenberg, Michael C Abt, Theresa Alenghat, Carly G K Ziegler, Travis A Doering, Jill M Angelosanto, Brian J Laidlaw, Cliff Y Yang, Taheri Sathaliyawala, Masaru Kubota, Damian Turner, Joshua M Diamond, Ananda W Goldrath, Donna L Farber, Ronald G Collman, E John Wherry, David Artis. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nature Immunology, 2011; DOI: 10.1038/ni.2131

Cite This Page:

University of Pennsylvania School of Medicine. "Rebooting the system: Immune cells repair damaged lung tissues after flu infection." ScienceDaily. ScienceDaily, 5 October 2011. <www.sciencedaily.com/releases/2011/10/111003151836.htm>.
University of Pennsylvania School of Medicine. (2011, October 5). Rebooting the system: Immune cells repair damaged lung tissues after flu infection. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2011/10/111003151836.htm
University of Pennsylvania School of Medicine. "Rebooting the system: Immune cells repair damaged lung tissues after flu infection." ScienceDaily. www.sciencedaily.com/releases/2011/10/111003151836.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Ebola Cases Could Reach 1.4 Million Within 4 Months

Ebola Cases Could Reach 1.4 Million Within 4 Months

Newsy (Sep. 23, 2014) Health officials warn that without further intervention, the number of Ebola cases in Liberia and Sierra Leone could reach 1.4 million by January. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Cases to Triple in Weeks Without Drastic Action

WHO: Ebola Cases to Triple in Weeks Without Drastic Action

AFP (Sep. 23, 2014) The number of Ebola infections will triple to 20,000 by November, soaring by thousands every week if efforts to stop the outbreak are not stepped up radically, the WHO warned in a study on Tuesday. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
5 Ways Men Can Prevent Most Heart Attacks

5 Ways Men Can Prevent Most Heart Attacks

Newsy (Sep. 23, 2014) No surprise here: A recent study says men can reduce their risk of heart attack by maintaining a healthy lifestyle, which includes daily exercise. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins