Featured Research

from universities, journals, and other organizations

Ancient climate change has left a strong imprint on modern ecosystems

Date:
October 10, 2011
Source:
Aarhus University
Summary:
As Earth’s climate cycles between warm and cool periods, species often must move to stay within suitable conditions. Scientists have now mapped how fast species have had to migrate in the past to keep up with changing climate. They found that small-ranged species – which constitute much of Earth’s biodiversity – are concentrated in regions where little migration has been required. Predicted climate change will drastically increase the required migration rates in many of these locations, putting their unique faunas at risk.

The Andes, a topographically variable landscape with low climate-change velocity and high concentrations of small-ranged vertebrate species.
Credit: Dennis Pedersen

As Earth’s climate cycles between warm and cool periods, species often must move to stay within suitable conditions. Scientists have now mapped how fast species have had to migrate in the past to keep up with changing climate. They found that small-ranged species – which constitute much of Earth’s biodiversity – are concentrated in regions where little migration has been required. Climate change due to human activities will drastically increase the required migration rates in many of these locations, putting their unique faunas at risk.

Related Articles


During the Last Glacial Maximum (21,000 years ago) Earth's climate was much cooler and many species were forced to occupy very different areas than they do today. In northern Europe, for example, many of the species found today are relatively recent arrivals from their refuges in southern Europe. A team of ecologists and computer scientists have asked how fast species around the world have had to migrate to keep up with this massive historical climate change and whether there are differences in the modern communities between places with low and high required migration rates.

Required migration rates were estimated by calculating how fast climate conditions have moved over Earth's surface at a point. This velocity depends on both the rate of temperature change through time and on local topography. On steep topography, a short distance traveled can produce a large difference in temperature, leading to small climate-change velocities.

What happens if a species cannot migrate as fast as it must to keep up with the velocity of climate change? Its range may shrink and, in some cases, the species may go extinct. This is most likely when climate-change velocity is high relative to species' dispersal abilities. The researchers tested this by mapping patterns of small-ranged species diversity for all terrestrial amphibians, mammals and birds. High concentrations of small-ranged species occurred where velocities were low (for example, the South American Andes), and small-ranged species rarely occurred at all where velocities were high (much of northern Europe, for example). Weak dispersers (amphibians) were most strongly affected by velocity, while the strongest dispersers (birds) were least affected.Within the mammals, bats showed patterns more similar to birds, while non-flying mammals were more like the amphibians. Thus, there appears to be a direct connection between the required migration velocity, a species' ability to disperse in response, and ultimately, the probability that a species will be driven to extinction by climate change.

This research provides the first evidence that past regional climate shifts interact with local topography and species dispersal abilities with long-lasting important consequences for the global distribution of biodiversity.

Anthropogenic climate change is leading to increased climate-change velocities. Moreover, there are several regions in the world including the Amazon basin and much of Africa where velocities have historically been rather low but are expected to increase rapidly in the next 70 years. These areas, by virtue of their historically low velocities, have high concentrations of small-ranged species. These species will likely be at particular risk as velocities increase over the next several decades.


Story Source:

The above story is based on materials provided by Aarhus University. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Sandel, L. Arge, B. Dalsgaard, R. G. Davies, K. J. Gaston, W. J. Sutherland, J.- C. Svenning. The Influence of Late Quaternary Climate-Change Velocity on Species Endemism. Science, 2011; DOI: 10.1126/science.1210173

Cite This Page:

Aarhus University. "Ancient climate change has left a strong imprint on modern ecosystems." ScienceDaily. ScienceDaily, 10 October 2011. <www.sciencedaily.com/releases/2011/10/111007102916.htm>.
Aarhus University. (2011, October 10). Ancient climate change has left a strong imprint on modern ecosystems. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2011/10/111007102916.htm
Aarhus University. "Ancient climate change has left a strong imprint on modern ecosystems." ScienceDaily. www.sciencedaily.com/releases/2011/10/111007102916.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins