Featured Research

from universities, journals, and other organizations

X-ray camera makes A-grade particle detector

Date:
October 11, 2011
Source:
American Institute of Physics
Summary:
Combining an off-the-shelf X-ray camera with a thin piece of carbon foil yields a device that can detect high-energy organic atoms and heavy molecules better than the typical devices used for these jobs, with potential benefits ranging from the science of cancer treatment to star chemistry.

In the particle identification business, two pieces of information are vital: energy and spatial location. By measuring its energy you can work out the mass of your mystery particle. From its spatial location on the surface of a detector, you can work out where the particle came from -- and therefore how big the event was that produced the particle in the first place.

For the range of energies close to one million electron volts (1 MeV) -- a popular energy range to probe, with uses in a variety of fields from cancer treatment research to astrochemistry -- there are currently two leading methods of detecting particles. But both are limited in the types of molecules they can detect, and both sacrifice one type of information -- spatial location or energy measurements -- for the other.

Now a group of nuclear physicists and molecular scientists from the Universitι Paris Sud and Hamamatsu Photonics have demonstrated a new type of detector that can do both of these jobs at the same time. Their device uses the CCD image sensor chip in a particular off-the-shelf X-ray camera. In the study, described in a paper accepted to the AIP's Review of Scientific Instruments, the experimenters accelerated charged atoms (or ions) of carbon at various energies above 1 MeV, then "caught" those atoms with the camera. A single ion impact with the camera produced a bright spot on the image sensor.

They also accelerated molecules containing carbon and hydrogen. Unfortunately, these bigger particles overwhelmed the CCD chip, wiping out the details.

To avoid saturating the sensor, the researchers came up with the solution of putting a piece of thin carbon foil in front of it. The foil breaks up the projectile molecules that collide with it and sends them, like shrapnel, to the sensor to be counted. The foil also allowed them to separate different types of molecules from one another when the molecules' signatures would otherwise have overlapped.

The researchers say they hope their new detector will open the door to a new class of tools in the study of complex molecules using high-energy accelerators.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Chabot, G. Martinet, K. Béroff, T. Pino, S. Bouneau, B. Genolini, X. Grave, K. Nguyen, C. le Gailliard, P. Rosier, G. Féraud, H. Friha, B. Villier. Detection of atomic and molecular mega-electron-volt projectiles using an x-ray charged coupled device camera. Review of Scientific Instruments, 2011; 82 (10): 103301 DOI: 10.1063/1.3640411

Cite This Page:

American Institute of Physics. "X-ray camera makes A-grade particle detector." ScienceDaily. ScienceDaily, 11 October 2011. <www.sciencedaily.com/releases/2011/10/111011121258.htm>.
American Institute of Physics. (2011, October 11). X-ray camera makes A-grade particle detector. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2011/10/111011121258.htm
American Institute of Physics. "X-ray camera makes A-grade particle detector." ScienceDaily. www.sciencedaily.com/releases/2011/10/111011121258.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) — Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins