Featured Research

from universities, journals, and other organizations

Suspects in the quenching of star formation exonerated

Date:
October 11, 2011
Source:
University of California - San Diego
Summary:
Some supermassive black holes power luminous, rapidly growing objects called active galactic nuclei (AGN) that gather and condense enormous quantities of matter. Because astronomers had seen these objects primarily in massive, old galaxies with aging stars, many thought AGN might help to end the formation of new stars, though the evidence was always circumstantial. Now, a new survey has found AGN in all kinds of galaxies, including young, star-making factories.

More than a thousand X-ray signals illuminate a patch of sky called SXDF. The false colors in this image from a camera aboard the XMM-Newton spacecraft indicate the energy of the sources — from red for the weakest signals through green to blue for the strongest.
Credit: Image courtesy of Ian Stewart and Mike Watson (Leicester University/XMM-Newton Survey Science Centre)and ESA

Supermassive black holes millions to billions times the mass of our Sun lie at the heart of most, maybe all large galaxies. Some of these power brilliantly luminous, rapidly growing objects called active galactic nuclei that gather and condense enormous quantities of dust, gas and stars.

Because astronomers had seen these objects primarily in the oldest, most massive galaxies that glow with the red light of aging stars, many thought active galactic nuclei might help to bring an end to the formation of new stars, though the evidence was always circumstantial.

That idea has now been overturned by a new survey of the sky that found active galactic nuclei in all kinds and sizes of galaxies, including young, blue, star-making factories.

"The misconception was simply due to observational biases in the data," said Alison Coil, assistant professor of physics at the University of California, San Diego and an author of the new report, which will be published in The Astrophysical Journal.

"Before this study, people found active galactic nuclei predominantly at the centers of the most massive galaxies, which are also the oldest and are making no new stars," said James Aird, a postdoc at the University of California, San Diego's Center for Astrophysics and Space Sciences, who led the study.

Black holes, such as those at the centers of active galactic nuclei, can't be observed directly as not even light escapes their gravitational field. But as material swirls toward the event horizon, before it's sucked into the void, it releases intense radiation across the electromagnetic spectrum, including visible light. Of these, X-rays are often the brightest as they can penetrate the dust and gas that sometimes obscures other wavelengths.

"When we take into account variations in the strength of the X-ray signal, which can be relatively weak even from extremely fast-growing black holes, we find them over a whole range of galaxies," Aird said

He searched the sky for X-rays from active galactic nuclei using two orbiting telescopes, the XMM-Newton and the Chandra X-ray Observatory, and compared those signals to a large-scale survey of about 100,000 galaxies that mapped their colors and distances.

Coil led that survey, called PRIMUS, along with colleagues now at New York University and the Harvard College Observatory. Using the twin Magellan telescopes at Las Campanas Observatory in Chile, they detected the faint light of faraway galaxies.

They measured both the color of each galaxy and how much the spectrum of that light had shifted as the galaxies receded in our expanding universe -- an estimate of their distance from Earth. Because distances in space reach back in time, they've captured nearly two-thirds of the history of the universe in particular segments of the sky.

Galaxies can be distinguished by the color of their light. Younger galaxies glow with the bluish light of young stars. As starmaking ceases, and stars burn through their fuel, the color of their light shifts toward red.

In a sample of about 25,000 of the galaxies from the PRIMUS survey, Aird found 264 X-ray signals emanating from galaxies of every kind: massive and smaller, old elliptical red galaxies and younger blue spirals. They're everywhere.

So as suspects in the quenching of star formation, active galactic nuclei have been exonerated. And because the astronomers saw similar signals stretching far back into time, they conclude that the physical processes that trigger and fuel active galactic nuclei haven't changed much in the last half of the universe's existence.

Yet starmaking has ceased in many galaxies, probably when they ran out of gas, though it's not clear how that happens. The interstellar gas could all be used up, turned into stars, but Coil studies another possibility: fierce galactic winds that have been seen blowing gas and dust from so-called starburst galaxies.

The source of those winds, and their influence on the evolution of galaxies, is one of Coil's main areas of current investigation.

Additional authors include John Moustakas and Stephen Smith of UC San Diego's Center for Astrophysics and Space Sciences; Michael Blanton, co-principal investigator on the PRIMUS survey, and Guangtun Zhu of New York University's Center for Cosmology and Particle Physics; Scott Burles of D.E. Shaw and Co. in Cupertino, CA; Hubbard Fellow and Princeton-Carnegie Fellow Richard Cool of Princeton University's Department of Astrophysical Sciences; Daniel Eisenstein, co-principal investigator of the PRIMUS survey, of the Harvard College Observatory; and Kenneth Wong of the University of Arizona's Steward Observatory.

Alison Coil is an Alfred P. Sloan Foundation Fellow. The National Science Foundation and NASA provided funding for the PRIMUS survey.


Story Source:

The above story is based on materials provided by University of California - San Diego. The original article was written by Susan Brown. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Suspects in the quenching of star formation exonerated." ScienceDaily. ScienceDaily, 11 October 2011. <www.sciencedaily.com/releases/2011/10/111011171558.htm>.
University of California - San Diego. (2011, October 11). Suspects in the quenching of star formation exonerated. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2011/10/111011171558.htm
University of California - San Diego. "Suspects in the quenching of star formation exonerated." ScienceDaily. www.sciencedaily.com/releases/2011/10/111011171558.htm (accessed September 30, 2014).

Share This



More Space & Time News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Water You Drink Might Be Older Than The Sun

The Water You Drink Might Be Older Than The Sun

Newsy (Sep. 27, 2014) Researchers at the University of Michigan simulated the birth of planets and our sun to determine whether water in the solar system predates the sun. Video provided by Newsy
Powered by NewsLook.com
First Woman Cosmonaut in 17 Years Blasts Off for ISS

First Woman Cosmonaut in 17 Years Blasts Off for ISS

AFP (Sep. 26, 2014) A Russian Soyuz spacecraft carrying an American astronaut and two Russian cosmonauts, including the first woman cosmonaut in 17 years, blasted off on schedule Friday. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com
Water Discovery On Small Planet Could Be Key To Earth 2.0

Water Discovery On Small Planet Could Be Key To Earth 2.0

Newsy (Sep. 25, 2014) Scientists have discovered traces of water in the atmosphere of a distant, Neptune-sized planet. Video provided by Newsy
Powered by NewsLook.com
Raw: US-Russian Crew Lifts Off for Space Station

Raw: US-Russian Crew Lifts Off for Space Station

AP (Sep. 25, 2014) A U.S.-Russian space crew has blasted off successfully for the International Space Station. The Russian Soyuz-TMA14M spacecraft lifted off from the Russian-leased Baikonur launch facility in Kazakhstan. (Sept. 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins