Featured Research

from universities, journals, and other organizations

X-linked mental retardation protein is found to mediate synaptic plasticity in hippocampus

Date:
October 20, 2011
Source:
Cold Spring Harbor Laboratory
Summary:
Scientists have solved part of a puzzle concerning the relationship between changes in the strength of synapses -- the tiny gaps across which nerve cells in the brain communicate -- and dysfunctions in neural circuits that have been linked with drug addiction, mental retardation and other cognitive disorders.

Scientists at Cold Spring Harbor Laboratory (CSHL) have solved part of a puzzle concerning the relationship between changes in the strength of synapses -- the tiny gaps across which nerve cells in the brain communicate -- and dysfunctions in neural circuits that have been linked with drug addiction, mental retardation and other cognitive disorders.

Related Articles


A team led by CSHL Professor Linda Van Aelst has pieced together essential steps in a signaling cascade within excitatory nerve cells that explains a key phenomenon called longterm depression, or LTD. The "depression" in question has nothing to do with the human illness with that name. Rather, it refers to a tamping-down of the strength of individual synapses -- what scientists call synaptic plasticity.

The mechanism behind LTD is called endocytosis. It involves a retraction of receptors where neurotransmitters can "dock." Van Aelst and colleagues have demonstrated how LTD works following activation of a class of receptors called group I metabotrobic glutamate receptors, or mGluRs.

It was known that longterm depression mediated by mGluRs depended in part on the rapid synthesis of specific proteins. Yet the identity of these proteins had largely remained a mystery. The CSHL scientists have now shown that locally rapid production of a protein called oligophrenin 1 (OPHN1) follows activation of group I mGluRs. OPHN1 in turn was shown to mediate LTD in hippocampal nerve cells, by interacting with yet another protein called EndophilinA2/3.

The result of this cascade of intracellular signals was dramatic: persistent removal of AMPA-type receptors at the excitatory synapse, and the onset of LTD. When rapid production of OPHN1 was blocked, mGluR-dependent LTD did not occur. These findings appear online ahead of print in the journal Neuron.

Van Aelst explained the significance of the finding. "OPHN1 has two important functions that we know about. One is early in development, after synapses have appeared in the emerging nervous system. In this phase, OPHN1 in concert with other factors stabilizes receptors at synapses, and thus is essential in maintaining the structure of these essential features of neural circuitry.

"Our new findings show another vital role for OPHN1, later in development and into maturity. We assume that in response to behavioral stimuli -- we aren't yet sure what kind -- mGluRs are activated, setting off the series of steps that we identified: rapid upregulation of OPHN1, which binds to EndophilinA2/3, which in turn mediates the long-term removal of AMPA receptors."

OPHN1 is known to be associated with X-linked mental retardation and with other cognitive and behavioral deficits. The team hypothesizes that OPHN1-related changes in plasticity such as those described in their new work may be causally related to such pathology. They are investigating this possibility in their current work.

This work was supported by grants from the National Institue of Mental Health and NAAR.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. The original article was written by Peter Tarr. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nael Nadif Kasri, Akiko Nakano-Kobayashi, Linda Van Aelst. Rapid Synthesis of the X-Linked Mental Retardation Protein OPHN1 Mediates mGluR-Dependent LTD through Interaction with the Endocytic Machinery. Neuron, 2011; 72 (2): 300-315 DOI: 10.1016/j.neuron.2011.09.001

Cite This Page:

Cold Spring Harbor Laboratory. "X-linked mental retardation protein is found to mediate synaptic plasticity in hippocampus." ScienceDaily. ScienceDaily, 20 October 2011. <www.sciencedaily.com/releases/2011/10/111019212248.htm>.
Cold Spring Harbor Laboratory. (2011, October 20). X-linked mental retardation protein is found to mediate synaptic plasticity in hippocampus. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2011/10/111019212248.htm
Cold Spring Harbor Laboratory. "X-linked mental retardation protein is found to mediate synaptic plasticity in hippocampus." ScienceDaily. www.sciencedaily.com/releases/2011/10/111019212248.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

AAA: Distracted Driving a Serious Teen Problem

AAA: Distracted Driving a Serious Teen Problem

AP (Mar. 25, 2015) While distracted driving is not a new problem for teens, new research from the AAA Foundation for Traffic Safety says it&apos;s much more serious than previously thought. (March 25) Video provided by AP
Powered by NewsLook.com
Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Smartphone Use Changing Our Brain and Thumb Interaction, Say Researchers

Reuters - Innovations Video Online (Mar. 25, 2015) European researchers say our smartphone use offers scientists an ideal testing ground for human brain plasticity. Dr Ako Ghosh&apos;s team discovered that the brains and thumbs of smartphone users interact differently from those who use old-fashioned handsets. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Many Don't Know They Have Alzheimer's, But Their Doctors Do

Many Don't Know They Have Alzheimer's, But Their Doctors Do

Newsy (Mar. 24, 2015) According to a new study by the Alzheimer&apos;s Association, more than half of those who have the degenerative brain disease aren&apos;t told by their doctors. Video provided by Newsy
Powered by NewsLook.com
A Quick 45-Minute Nap Can Improve Your Memory

A Quick 45-Minute Nap Can Improve Your Memory

Newsy (Mar. 23, 2015) Researchers found those who napped for 45 minutes to an hour before being tested on information recalled it five times better than those who didn&apos;t. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins