Featured Research

from universities, journals, and other organizations

Genetic difference in staph infects some heart devices, not others

Date:
October 24, 2011
Source:
Duke University Medical Center
Summary:
Infectious films of Staph bacteria around an implanted cardiac device, such as a pacemaker, often force a second surgery to replace the device at a cost of up to $100,000. But not all implanted cardiac devices become infected. Now researchers have discovered how and why certain strains of staphylococcus aureus (SA) bacteria, the leading cause of these device infections, have infected thousands of implanted cardiac devices. About 4 percent of the one million annually implanted devices become infected.

Infectious films of staph bacteria that collect around an implanted cardiac device, such as a pacemaker, often force a second surgery to replace the device at a cost of up to $100,000. But not all implanted cardiac devices become infected.

Related Articles


Now researchers from Duke University Medical Center and Ohio State University (OSU) have discovered how and why certain strains of staphylococcus aureus (SA) bacteria, the leading cause of these device infections, have infected thousands of implanted cardiac devices. About 4 percent of the one million annually implanted devices become infected.

The researchers examined SA's ability to bind to a sticky human (mammalian) substance called fibronectin that circulates in blood and sticks to the surfaces of implanted devices, like pacemakers.

Staph bacteria have fibronectin-binding molecules and bind to the human protein to establish an infection on the implanted medical device. Once established, these infections are difficult or impossible to eradicate without removing the device itself.

"This the first step in biofilm-based disease work," said Vance Fowler, MD, MHS, an associate professor of infectious diseases in the Duke Department of Medicine and co-corresponding author of the study. "I would expect the findings would be relevant for most implanted devices. The difference is that the cardiac devices are in direct contact with the bloodstream, and thus with fibronectin, so we need to do further work to clarify."

The study appears online in the Proceedings of the National Academy of Sciences.

"The question was, 'are all SA created equal when binding with fibronectin?' and the answer is no," Fowler said. "We identified differing SA isolates from the blood of patients. All of the patients had SA, but some of the cardiac devices were infected and some were not, and we wanted to learn why. Most people had the infection but a lucky few didn't."

Working with the lab of Steven K. Lower, PhD, at OSU, which specializes in atomic force microscopy, the team sequenced the binding regions of the gene that coded for fibronectin-binding protein in the bacteria.

They found that SA with three specific one-letter differences in their DNA were significantly more common in the infected cardiac-device group. The infectious bacteria had one to three of these changes. The research team also verified that the ability to bind was stronger in the three SA strains found in the infected group.

"We often hear that nanoscience will make the world a better place, and our study demonstrates a direct correlation between something that occurs at the scale of a nanometer (i.e. a bond between a bacterium and implant) and the health of human patients with cardiovascular implants," said Steven K. Lower, co-corresponding author and associate professor in the OSU School of Earth Sciences.

"Some practical implications of this research could be a new protocol to determine risk of serious biofilm-related infections for patients with prostheses or patients who are considering surgical implants. For example, we could obtain a culture of S. aureus from the skin of a patient, and determine the risk of a biofilm-based infection, using the methods we described."

Roberto D. Lins, a computer engineer with structural biochemistry and modeling expertise at the Universidade Federal de Pernambuco in Recife, Brazil, showed through dynamic modeling the interaction of the protein and the SA polymorphs of interest.

Using a powerful computer, the team saved about two-and-a-half years' time and learned that the three DNA differences were associated with SA's ability to form more chemical bonds with fibronectin. These SA strains had an increased number of hydrogen bonds between the fibronectin (in people) and the fibronectin-binding protein (in the SA).

"Getting to the fundamental answers of common, serious infections that plague our patients is why I stay in research," Fowler said. "Now we have a plausible biological explanation of why these particular SNP mutations matter. We have a basis for working on prevention strategies."

Lower noted, "I like to think that one day we will discover a fundamental force law that we can exploit so that S. aureus never forms a bond with the surface of an implanted device."

The two other co-corresponding authors are Pao Lamlertthon of the Fowler lab, and Nadia Casillas-Ituarte of the Lower lab. Other authors include L. Barth Reller of Duke University Medical Center; Ruchirej Yongsunthon, Eric S. Taylor, Alex C. DiBartola, and Brian H. Lower of OSU; Catherine Edmonson and Lauren M. McIntyre of University of Florida, Gainesville; Yok-Ai Que of University of Lausanne in Switzerland; and Robert Ros of Arizona State University in Tempe.

Funding came from grants from the National Institutes of Health and the National Science Foundation, as well as the Swiss National Science Foundation/Swiss Medical Association and SICPA.


Story Source:

The above story is based on materials provided by Duke University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Steven K. Lower, Supaporn Lamlertthon, Nadia N. Casillas-Ituarte, Roberto D. Lins, Ruchirej Yongsunthon, Eric S. Taylor, Alex C. Dibartola, Catherine Edmonson, Lauren M. Mcintyre, L. Barth Reller, Yok-Ai Que, Robert Ros, Brian H. Lower, Vance G. Fowler, Jr. Polymorphisms in fibronectin binding protein A of Staphylococcus aureus are associated with infection of cardiovascular devices. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1109071108

Cite This Page:

Duke University Medical Center. "Genetic difference in staph infects some heart devices, not others." ScienceDaily. ScienceDaily, 24 October 2011. <www.sciencedaily.com/releases/2011/10/111024153412.htm>.
Duke University Medical Center. (2011, October 24). Genetic difference in staph infects some heart devices, not others. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2011/10/111024153412.htm
Duke University Medical Center. "Genetic difference in staph infects some heart devices, not others." ScienceDaily. www.sciencedaily.com/releases/2011/10/111024153412.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Geoscientists Find Key to Why Some Patients Get Infections from Cardiac Implants

Oct. 25, 2011 — New research suggests that some patients develop a potentially deadly blood infection from their implanted cardiac devices because bacterial cells in their bodies have gene mutations that allow them ... read more

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins