Featured Research

from universities, journals, and other organizations

New tool developed for the study of spatial patterns in living cells

Date:
November 1, 2011
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
By embedding fixed arrays of gold nanoparticles into fluid lipid bilayers, scientists can study with unprecedented detail how the spatial patterns of chemical and physical properties on membranes can determine the fate of a cell -- whether it lives or dies, remains normal or turns cancerous.

Schematic shows gold nanoparticle arrays embedded into a supported lipid bilayer membrane then selectively labeled with specific surface chemistry properties to study living cells that are bound to the nanoparticles and/or lipid bilayer.
Credit: Groves et al

Football has often been called "a game of inches," but biology is a game of nanometers, where spatial differences of only a few nanometers can determine the fate of a cell -- whether it lives or dies, remains normal or turns cancerous. Scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a new and better way to study the impact of spatial patterns on living cells.

Berkeley Lab chemist Jay Groves led a study in which artificial membranes made up of a fluid bilayer of lipid molecules were embedded with fixed arrays of gold nanoparticles to control the spacing of proteins and other cellular molecules placed on the membranes. This provided the researchers with an unprecedented opportunity to study how the spatial patterns of chemical and physical properties on membrane surfaces influence the behavior of cells.

"The gold nanoparticles are similar to the size of a single protein molecule, which gets us to a scale we couldn't really access before," says Groves. "As the first example of a biological membrane platform that combines fixed nanopatterning with the mobility of fluid lipid bilayers, our technique represents an important improvement over previous patterning methods."

Groves holds joint appointments with Berkeley Lab's Physical Biosciences Division and the University of California (UC) Berkeley's Chemistry Department, and is a Howard Hughes Medical Institute (HHMI) investigator. He is the corresponding author of a paper that reports these results in the journal Nano Letters.

Spatial patterning of chemical and physical properties on artificial membranes of lipid bilayers is a time-tested way to study the behavior of cultured biological cells. Natural lipid bilayer membranes surround virtually all living cells as well as many of the structures inside the cell including the nucleus. These membranes provide a barrier that restrains the movement of proteins and other cellular molecules, penning them into their proper locations and preventing them from moving into areas where they do not belong. Past spatial patterning efforts on artificial membranes have been done on an all-or-nothing basis -- proteins placed on a membrane either had complete mobility or were fixed in a static position.

"Immobile patterning intrinsically defeats any cellular process that naturally involves movement," Groves says. "On the other hand we need to be able to impose some fixed barriers in order to manipulate membranes in really novel ways."

Groves is a recognized leader in the development of unique "supported" synthetic membranes that are constructed out of lipids and assembled onto a substrate of solid silica. He and his group have used these supported membranes to demonstrate that living cells not only interact with their environment through chemical signals but also through physical force.

"We call our approach the spatial mutation strategy because molecules in a cell can be spatially re-arranged without altering the cell in any other way," he says.

However, until now Groves and his group were unable to get to the tens of nanometers length-scales that they can now reach by embedding their supported membranes with gold nanoparticles.

"Our new membranes provide a hybrid interface consisting of mobile and immobile components with controlled geometry," Groves says. "Proteins or other cellular molecules can be associated with the fluid lipid component, the fixed nanoparticle component, or both."

The gold nanoparticle arrays were patterned through a self-assembly process that provides controllable spacing between particles in the array in the important range of 50 to 150 nanometers. The gold nanoparticles themselves measure about five to seven nanometers in diameter.

Groves and his team successfully tested their hybrid membranes on a line of breast cancer cells known as MDA-MB-231 that is highly invasive. With their hybrid membranes, the team demonstrated that in the absence of cell adhesion molecules, the membrane remained essentially free of the cancer cells, but when both the nanoparticles and the lipid were functionalized with molecules that promote cell adhesion, the cancer cells were found all over the surface.

Groves and his research group are now using their gold nanoparticle membranes to study both cancer metastasis and T cell immunology. They expect to report their results soon.

Co-authoring the Nano Letters paper with Groves were Theobald Lohmuller, Sara Triffo, Geoff O'Donoghue, Qian Xu and Michael Coyle. This research was supported by the DOE Office of Science.


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Theobald Lohmόller, Sara Triffo, Geoff P. O’Donoghue, Qian Xu, Michael P. Coyle, Jay T. Groves. Supported Membranes Embedded with Fixed Arrays of Gold Nanoparticles. Nano Letters, 2011 DOI: 10.1021/nl202847t

Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "New tool developed for the study of spatial patterns in living cells." ScienceDaily. ScienceDaily, 1 November 2011. <www.sciencedaily.com/releases/2011/11/111101095402.htm>.
DOE/Lawrence Berkeley National Laboratory. (2011, November 1). New tool developed for the study of spatial patterns in living cells. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2011/11/111101095402.htm
DOE/Lawrence Berkeley National Laboratory. "New tool developed for the study of spatial patterns in living cells." ScienceDaily. www.sciencedaily.com/releases/2011/11/111101095402.htm (accessed October 22, 2014).

Share This



More Plants & Animals News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Cadaver Dogs Aid Search for More Victims of Suspected Indiana Serial Killer

Reuters - US Online Video (Oct. 21, 2014) — Police in Gary, Indiana are using cadaver dogs to search for more victims after a suspected serial killer confessed to killing at least seven women. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
White Lion Cubs Unveiled to the Public

White Lion Cubs Unveiled to the Public

Reuters - Light News Video Online (Oct. 21, 2014) — Visitors to Belgrade zoo meet a pair of three-week-old lion cubs for the first time. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) — Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) — Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins