Featured Research

from universities, journals, and other organizations

Solar energy: Solar concentrator increases collection with less loss

Date:
November 4, 2011
Source:
Penn State
Summary:
Converting sunlight into electricity is not economically attractive because of the high cost of solar cells, but a recent, purely optical approach to improving luminescent solar concentrators may ease the problem, according to researchers.

An LSC is illuminated by a laser beam (central spot) resulting in luminescence that is emitted from the edges and projected onto a white business card. The faintly visible concentric rings and different colors of light on the business card result from microcavity effects.
Credit: Image courtesy of Penn State

Converting sunlight into electricity is not economically attractive because of the high cost of solar cells, but a recent, purely optical approach to improving luminescent solar concentrators (LSCs) may ease the problem, according to researchers at Argonne National Laboratories and Penn State.

Using concentrated sunlight reduces the cost of solar power by requiring fewer solar cells to generate a given amount of electricity. LSCs concentrate light by absorbing and re-emiting it at lower frequency within the confines of a transparent slab of material. They can not only collect direct sunlight, but on cloudy days, can collect diffuse light as well. The material then guides the light to the slab's edges, where photovoltaic cells convert the energy to electricity.

"Currently, solar concentrators use expensive tracking systems that need to follow the sun," said Chris Giebink, assistant professor of electrical engineering, Penn State, formerly of Argonne National Laboratory. "If they are a few tenths of a degree off from perfection, the power output of the system drops drastically. If they could maintain high concentration without tracking the sun, they could create electricity more cheaply."

LSCs can do this, potentially concentrating light to the equivalent of more than 100 suns but, in practice, their output has been limited. While LSCs work well when small, their performance deteriorates with increasing size because much of the energy is reabsorbed before reaching the photovoltaics.

Typically, a little bit of light is reabsorbed each time it bounces around in the slab and, because this happens hundreds of times, it adds up to a big problem. The researchers, who included Giebink and Gary Widerrecht and Michael Wasielewski, Argonne-Northwestern Solar Energy Research Center and Northwestern University, note in the current issue of Nature Photonics that "we demonstrate near-lossless propagation for several different chromophores, which ultimately enables a more than twofold increase in concentration ratio over that of the corresponding conventional LSC."

The key to decreasing absorption is microcavity effects that occur when light travels through a small structure with a size comparable to the light's wavelength. These LSCs are made of two thin films on a piece of glass. The first thin film is a luminescent layer that contains a fluorescent dye capable of absorbing and re-emitting sunlight. This sits on a low refractive index layer that looks like air from the light's point of view. This combination makes the microcavity and changing the luminescent layer's thickness across the surface changes the microcavity's resonance. This means that light emitted from one location in the concentrator does not fit back into the luminescent film anywhere else, preventing it from being reabsorbed.

"We were looking for some way to admit the light, but keep it from being absorbed," said Giebink. "One of the things we could change was the shape and thickness of the luminescent layer."

The researchers tried an ordered stair step approach to the surface of the dye layer. They looked at the light output from this new configuration by placing a photovoltaic cell at one edge of the collector and found a 15 percent improvement compared to conventional LSCs.

"Experimentally we are working with devices the size of microscope slides, but we modeled the output for larger, more practical sizes," said Giebink. "Extending out results with the model predicts intensification to 25 suns for a window pane sized collector. This is about two and a half times higher than a conventional LSC."

The researchers do not believe that the stair step approach is the optimal design for these LSCs. A more complicated surface variation is probably even better, but designing that will take more modeling. Other approaches may also include varying the shape of the glass substrate, which would produce a similar effect and potentially be simpler to make.

"We need to find the optimum way to structure this new type of LSC so that it is more efficient but also very inexpensive to make," said Giebink.

The U.S. Department of Energy supported this work. Argonne National Laboratory has filed for a patent on this application.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Solar energy: Solar concentrator increases collection with less loss." ScienceDaily. ScienceDaily, 4 November 2011. <www.sciencedaily.com/releases/2011/11/111102125549.htm>.
Penn State. (2011, November 4). Solar energy: Solar concentrator increases collection with less loss. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2011/11/111102125549.htm
Penn State. "Solar energy: Solar concentrator increases collection with less loss." ScienceDaily. www.sciencedaily.com/releases/2011/11/111102125549.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com
3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

TheStreet (Apr. 22, 2014) Sales of motorcycles have continued to ride back from the depths of hell known as the Great Recession. Excluding scooters, sales of motorcycles increased 3% in 2013. In units, however, at 465,000 sold last year, the total remained about 50% below the peak hit in 2007. Industry leader Harley Davidson’s shareholders have benefited both by the industry recovery and positive headlines emanating from the company. Belus Capital Advisors CEO Brian Sozzi takes you beyond the headlines of the motorcycle maker. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins