Featured Research

from universities, journals, and other organizations

Magnetic fields set stage for birth of new stars

Date:
November 17, 2011
Source:
Max Planck Institute for Astronomy/Max-Planck-Institut für Astronomie
Summary:
Astronomers have, for the first time, measured the alignment of magnetic fields in gigantic clouds of gas and dust in a distant galaxy. Their results suggest that such magnetic fields play a key role in channeling matter to form denser clouds, and thus in setting the stage for the birth of new stars.

This image is a blend of the Galaxy Evolution Explorer's M33 image and another taken by NASA's Spitzer Space Telescope. M33, one of our closest galactic neighbors, is about 2.9 million light-years away in the constellation Triangulum, part of what's known as our Local Group of galaxies.
Credit: NASA/JPL-Caltech

Astronomers at the Max Planck Institute for Astronomy have, for the first time, measured the alignment of magnetic fields in gigantic clouds of gas and dust in a distant galaxy. Their results suggest that such magnetic fields play a key role in channeling matter to form denser clouds, and thus in setting the stage for the birth of new stars.

Related Articles


The work is being published in the journal Nature.

Stars and their planets are born when giant clouds of interstellar gas and dust collapse. You've probably seen the resulting stellar nurseries in beautiful astronomical images: Colorful nebulae, lit by the bright young stars they have brought forth.

Astronomers know quite a bit about these so-called molecular clouds: They consist mainly of hydrogen molecules -- unusual in a cosmos where conditions are rarely right for hydrogen atoms to bond together into molecules. And if one traces the distribution of clouds in a spiral galaxy like our own Milky Way galaxy, one finds that they are lined up along the spiral arms.

But how do those clouds come into being? What makes matter congregate in regions a hundred or even a thousand times more dense than the surrounding interstellar gas?

One candidate mechanism involves the galaxy's magnetic fields. Everyone who has seen a magnet act on iron filings in the classic classroom experiment knows that magnetic fields can be used to impose order. Some researchers have argued that something similar goes on in the case of molecular clouds: that galaxies' magnetic fields guide and direct the condensation of interstellar matter to form denser clouds and facilitate their further collapse.

Some astronomer see this as the key mechanism enabling star formation. Others contend that the cloud matter's gravitational attraction and turbulent motion of gas within the cloud are so strong as to cancel any influence of an outside magnetic field.

If we were to restrict attention to our own galaxy, it would be difficult to find out who is right. We would need to see our galaxy's disk from above to make the appropriate measurements; in reality, our Solar System sits within the galactic disk. That is why Hua-bai Li and Thomas Henning from the Max Planck Institute for Astronomy chose a different target: the Triangulum galaxy, 3 million light-years from Earth and also known as M 33, which is oriented in just the right way (cf. image).

Using a telescope known as the Submillimeter Array (SMA), which is located at Mauna Kea Observatory on Mauna Kea Island, Hawai'i, Li and Henning measured specific properties of radiation received from different regions of the galaxy which are correlated with the orientation of these region's magnetic fields. They found that the magnetic fields associated with the galaxy's six most massive giant molecular clouds were orderly, and well aligned with the galaxy's spiral arms.

If turbulence played a more important role in these clouds than the ordering influence of the galaxy's magnetic field, the magnetic field associated with the cloud would be random and disordered.

Thus, Li and Henning's observations are a strong indication that magnetic fields indeed play an important role when it comes to the formation of dense molecular clouds -- and to setting the stage for the birth of stars and planetary systems like our own.


Story Source:

The above story is based on materials provided by Max Planck Institute for Astronomy/Max-Planck-Institut für Astronomie. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hua-bai Li, Thomas Henning. The alignment of molecular cloud magnetic fields with the spiral arms in M33. Nature, 2011; DOI: 10.1038/nature10551

Cite This Page:

Max Planck Institute for Astronomy/Max-Planck-Institut für Astronomie. "Magnetic fields set stage for birth of new stars." ScienceDaily. ScienceDaily, 17 November 2011. <www.sciencedaily.com/releases/2011/11/111116132119.htm>.
Max Planck Institute for Astronomy/Max-Planck-Institut für Astronomie. (2011, November 17). Magnetic fields set stage for birth of new stars. ScienceDaily. Retrieved January 28, 2015 from www.sciencedaily.com/releases/2011/11/111116132119.htm
Max Planck Institute for Astronomy/Max-Planck-Institut für Astronomie. "Magnetic fields set stage for birth of new stars." ScienceDaily. www.sciencedaily.com/releases/2011/11/111116132119.htm (accessed January 28, 2015).

Share This


More From ScienceDaily



More Space & Time News

Wednesday, January 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Asteroid's Moon Spotted During Earth Flyby

Asteroid's Moon Spotted During Earth Flyby

Rumble (Jan. 27, 2015) — Scientists working with NASA&apos;s Deep Space Network antenna at Goldstone, California discovered an unexpected moon while observing asteroid 2004 BL86 during its recent flyby past Earth. Credit to &apos;NASA JPL&apos;. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) — Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Mars Rover Opportunity Celebrates 11-Year Anniversary

Mars Rover Opportunity Celebrates 11-Year Anniversary

Rumble (Jan. 26, 2015) — Eleven years ago NASA&apos;s Opportunity rover touched down on Mars for what was only supposed to be a 90-day mission. Since then it has traveled 25.9 miles (41.7 kilometers), further than any other off-Earth surface vehicle has ever driven. Credit to &apos;NASA&apos;. Video provided by Rumble
Powered by NewsLook.com
NASA's On Course To Take Pluto's Best Photo Ever

NASA's On Course To Take Pluto's Best Photo Ever

Newsy (Jan. 25, 2015) — NASA&apos;s New Horizons probe is en route to snap a picture of Pluto this summer, but making sure it doesn&apos;t miss its one chance to do so starts now. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins