Featured Research

from universities, journals, and other organizations

A first: Lab creates cells used by brain to control muscle cells

Date:
November 29, 2011
Source:
University of Central Florida
Summary:
Researchers, for the first time, have used stem cells to grow neuromuscular junctions between human muscle cells and human spinal cord cells, the key connectors used by the brain to communicate and control muscles in the body.

University of Central Florida researchers, for the first time, have used stem cells to grow neuromuscular junctions between human muscle cells and human spinal cord cells, the key connectors used by the brain to communicate and control muscles in the body.

Related Articles


The success at UCF is a critical step in developing "human-on-a-chip" systems. The systems are models that recreate how organs or a series of organs function in the body. Their use could accelerate medical research and drug testing, potentially delivering life-saving breakthroughs much more quickly than the typical 10-year trajectory most drugs take now to get through animal and patient trials.

"These types of systems have to be developed if you ever want to get to a human-on-a-chip that recreates human function," said James Hickman, a UCF bioengineer who led the breakthrough research. "It's taken many trials over a number of years to get this to occur using human derived stem cells."

Hickman's work, funded through the National Institute of Neurological Disorders and Stroke (NINDS) at the National Institutes of Health, is described in the December issue of Biomaterials.

Hickman is excited about the future of his research because several federal agencies recently launched an ambitious plan to jump-start research in "human-on-a-chip" models by making available at least $140 million in grant funding.

The National Institutes of Health (NIH), the Defense Advanced Research Projects Agency (DARPA), and the Federal Drug Administration (FDA) are leading the research push.

The goal of the call for action is to produce systems that include various miniature organs connected in realistic ways to simulate human body function. This would make it possible, for instance, to test drugs on human cells well before they could safely and ethically be tested on living humans. The technique could potentially be more effective than testing in mice and other animals currently used to screen promising drug candidates and to develop other medical treatments.

Such conventional animal testing is not only slow and expensive, but often leads to failures that might be overcome with better testing options. The limitations of conventional testing options have dramatically slowed the emergence of new drugs, Hickman said.

The successful UCF technique began with a collaborator, Brown University Professor Emeritus Herman Vandenburgh, who collected muscle stem cells via biopsy from adult volunteers. Stem cells are cells that can, under the right conditions, grow into specific forms. They can be found among normal cells in adults, as well as in developing fetuses.

Nadine Guo, a UCF research professor, conducted a series of experiments and found that numerous conditions had to come together just right to make the muscle and spinal cord cells "happy" enough to join and form working junctions. This meant exploring different concentrations of cells and various timescales, among other parameters, before hitting on the right conditions.

"Right now we rely a lot on animal systems for medical research but this is a pure human system," Guo said. "This work proved that, biologically, this is workable."

Besides being a key requirement for any complete human-on-a-chip model, such nerve-muscle junctions might themselves prove important research tools. These junctions play key roles in Amyotrophic lateral sclerosis, commonly known as Lou Gehrig's disease, in spinal cord injury, and in other debilitating or life threatening conditions. With further development, the team's techniques could be used to test new drugs or other treatments for these conditions even before more expansive chip-based models are developed.


Story Source:

The above story is based on materials provided by University of Central Florida. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiufang Guo, Mercedes Gonzalez, Maria Stancescu, Herman H. Vandenburgh, James J. Hickman. Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system. Biomaterials, 2011; 32 (36): 9602 DOI: 10.1016/j.biomaterials.2011.09.014

Cite This Page:

University of Central Florida. "A first: Lab creates cells used by brain to control muscle cells." ScienceDaily. ScienceDaily, 29 November 2011. <www.sciencedaily.com/releases/2011/11/111122133038.htm>.
University of Central Florida. (2011, November 29). A first: Lab creates cells used by brain to control muscle cells. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2011/11/111122133038.htm
University of Central Florida. "A first: Lab creates cells used by brain to control muscle cells." ScienceDaily. www.sciencedaily.com/releases/2011/11/111122133038.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins