Featured Research

from universities, journals, and other organizations

Emerging new properties at oxide interfaces

Date:
November 28, 2011
Source:
National University of Singapore
Summary:
Researchers discovered a collective electronic state not seen before in the bulk of either two individual insulating oxides, thus demonstrating that electrons at their interface can now exhibit ferromagnetism.

A graphic image of an atomically flat heterostructure between Lanthanum Aluminate (LaAlO3) – represented in orange – and Strontium Titanate (SrTiO3) – represented in blue – with two-dimensional electron gas emerge at their interface.
Credit: Image courtesy of National University of Singapore

Dr. Ariando of the National University of Singapore discovered a collective electronic state not seen before in the bulk of either two individual insulating oxides, thus demonstrating that electrons at their interface can now exhibit ferromagnetism.

In many ionic materials, including the oxides, surfaces created along specific directions can become electrically charged. By the same token, such electronic charging, or 'polarisation', can also occur at the interface of two connecting materials.

Theoretically, this could lead to the build-up of an ever increasing voltage in the materials in certain systems, a situation known as a 'polarity catastrophe'. Certainly this cannot occur in practical systems, for energy sake, and Nature deals with this situation by reconstructing the electronic configuration of the interface via a shifting of charges across the interface, or by structural reconstructions, namely, the displacement of atoms.

With oxide materials, a unique consequence of these reconstructions is that it provides a means to create novel electronic phases, stabilised by the interface, and which cannot exist in the bulk.

Dr. Ariando from the National University of Singapore's (NUS) Department of Physics and NUS Nanoscience and Nanotechnology-NanoCore, along with his co-workers, showed that at this interface, a remarkable combination of strong diamagnetism (superconductor like), paramagnetism and ferromagnetism can co-exist with the quasi two-dimensional electron gas when prepared under a more oxidising condition.

Past studies had shown that two-dimensional conducting planes, in the form of quasi two-dimensional electron gas, could emerge between otherwise non-magnetic insulating oxide, Lanthanum Alumniate (LaAlO3) and Strontium Titanate (SrTiO3).

Interestingly, Dr. Ariando's team had also shown that the ferromagnetic phase was stable even above room temperature and the diamagnetism below a relatively high temperature of 60 K.

Industrial applications

The results also indicate that the free surface of SrTiO3 could well be responsible for all these fascinating phenomena. The SrTiO3 resembles Silicon. This will have a significant impact on industry since Silicon has been used in semiconductor technology -- silicon has been the workhorse for oxide-based devices and electronics.

These multiple electronic and magnetic phases at oxide interfaces could yield interesting technological applications. That a variety of magnetic states can be produced close to the surface (< 10 nm) by changing the external stimulus to the SrTiO3 or the interface of LaAlO3/SrTiO3, be it change in oxygen pressure or magnetic field, thus proves that this is a very active interface, and that it can yield strong responses to external stimuli.

One could well consider building novel sensors out of these interfaces that could be used as, say, oxygen sensors, or even magnetic sensors. Still, where these applications are concerned, there is a need to further understand these phenomena and optimise the device configuration.

The research of Dr. Ariando and his co-workers in the oxide interface field is reminiscent of the times when two-dimensional electron gas in the semiconductor heterostructures first became available, and the quantum Hall effect and fractional quantum Hall effect were discovered, both resulting in Nobel prizes.

The physics of the oxide material systems is however richer, involving much stronger interaction between the electrons, mutually and within the crystal lattice. There is great interest in exploring these interfaces in the quest for new nano-electronic devices.


Story Source:

The above story is based on materials provided by National University of Singapore. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ariando, X. Wang, G. Baskaran, Z. Q. Liu, J. Huijben, J. B. Yi, A. Annadi, A. Roy Barman, A. Rusydi, S. Dhar, Y. P. Feng, J. Ding, H. Hilgenkamp, T. Venkatesan. Electronic phase separation at the LaAlO3/SrTiO3 interface. Nature Communications, 2011; 2: 188 DOI: 10.1038/ncomms1192

Cite This Page:

National University of Singapore. "Emerging new properties at oxide interfaces." ScienceDaily. ScienceDaily, 28 November 2011. <www.sciencedaily.com/releases/2011/11/111125160906.htm>.
National University of Singapore. (2011, November 28). Emerging new properties at oxide interfaces. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2011/11/111125160906.htm
National University of Singapore. "Emerging new properties at oxide interfaces." ScienceDaily. www.sciencedaily.com/releases/2011/11/111125160906.htm (accessed August 20, 2014).

Share This




More Matter & Energy News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins