Featured Research

from universities, journals, and other organizations

Researchers develop a way to monitor engineered blood vessels as they grow in patients

Date:
December 9, 2011
Source:
Federation of American Societies for Experimental Biology
Summary:
New research describes how by using magnetic resonance imaging and nanoparticle technology, scientists can monitor the growth of laboratory-engineered blood vessels after implantation in patients. This is an important step toward ensuring that blood vessels, and tissues engineered from a patient's own biological material, are taking hold and working as expected. This is the first method for monitoring the growth and progress of engineered tissues once they are implanted.

Using magnetic resonance imaging (MRI) and nanoparticle technology, researchers from Yale have devised a way to monitor the growth of laboratory-engineered blood vessels after they have been implanted in patients. This advance represents an important step toward ensuring that blood vessels, and possibly other tissues engineered from a patient's own biological material, are taking hold and working as expected. Until now, there has been no way to monitor the growth and progress of engineered tissues once they were implanted.

The research was published in the December 2011 issue of the FASEB Journal.

"We hope that the important findings from our study will serve as a valuable tool for physicians and scientists working to better understand the biological mechanisms involved in tissue engineering," said Christopher K. Breuer, M.D., co-author of the study from the Interdepartmental Program in Vascular Biology and Therapeutics at Yale University School of Medicine in New Haven, CT. "Resulting advances will hopefully usher in a new era of personalized medical treatments where replacement vessels are specifically designed for each patient suffering from cardiac anomalies and disease."

To make this advance, scientists used two different groups of cells to make tissue-engineered blood vessels. In the first group, the cells were labeled with the MRI contrast agent. In the second group, the cells were normal and did not have an MRI label. Cells from each group were then used to create separate laboratory-engineered blood vessels, which were implanted into mice. The purpose was to see whether the laboratory-engineered blood vessels made from cells that were labeled with the contrast agent would indeed be visible on MRI and to make sure that the addition of the contrast agent did not negatively affect the cells or the function of the laboratory-engineered vessels. Researchers imaged the mice with MRI and found that it was possible to track the cells labeled with contrast agent, but not possible to track the cells that were not labeled. This suggests that using MRI and cellular contrast agents to study cellular changes in the tissue-engineered blood vessels after they are implanted is an effective way to monitor these types of vessels.

"This is great news for patients with congenital heart defects, who have to undergo tissue grafting, but that's only the tip of the scalpel," said Gerald Weissmann, M.D., Editor-in-Chief of the FASEB Journal. "As we progress toward an era of personalized medicine -- where patients' own tissues and cells will be re-engineered into replacement organs and treatments -- we will need noninvasive ways to monitor what happens inside the body in real time. This technique fulfills another promise of nanobiology."


Story Source:

The above story is based on materials provided by Federation of American Societies for Experimental Biology. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. K. Harrington, H. Chahboune, J. M. Criscione, A. Y. Li, N. Hibino, T. Yi, G. A. Villalona, S. Kobsa, D. Meijas, D. R. Duncan, L. Devine, X. Papademetri, T. Shin'oka, T. M. Fahmy, C. K. Breuer. Determining the fate of seeded cells in venous tissue-engineered vascular grafts using serial MRI. The FASEB Journal, 2011; 25 (12): 4150 DOI: 10.1096/fj.11-185140

Cite This Page:

Federation of American Societies for Experimental Biology. "Researchers develop a way to monitor engineered blood vessels as they grow in patients." ScienceDaily. ScienceDaily, 9 December 2011. <www.sciencedaily.com/releases/2011/11/111130120112.htm>.
Federation of American Societies for Experimental Biology. (2011, December 9). Researchers develop a way to monitor engineered blood vessels as they grow in patients. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/11/111130120112.htm
Federation of American Societies for Experimental Biology. "Researchers develop a way to monitor engineered blood vessels as they grow in patients." ScienceDaily. www.sciencedaily.com/releases/2011/11/111130120112.htm (accessed July 25, 2014).

Share This




More Plants & Animals News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boy Attacked by Shark in Florida

Boy Attacked by Shark in Florida

Reuters - US Online Video (July 24, 2014) An 8-year-old boy is bitten in the leg by a shark while vacationing at a Florida beach. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Goma Cheese Brings Whiff of New Hope to DRC

Goma Cheese Brings Whiff of New Hope to DRC

Reuters - Business Video Online (July 24, 2014) The eastern region of the Democratic Republic of Congo, mainly known for conflict and instability, is an unlikely place for the production of fine cheese. But a farm in the village of Masisi, in North Kivu is slowly transforming perceptions of the area. Known simply as Goma cheese, the Congolese version of Dutch gouda has gained popularity through out the region. Ciara Sutton reports. Video provided by Reuters
Powered by NewsLook.com
Dogs Appear To Become Jealous Of Owners' Attention

Dogs Appear To Become Jealous Of Owners' Attention

Newsy (July 23, 2014) A U.C. San Diego researcher says jealousy isn't just a human trait, and dogs aren't the best at sharing the attention of humans with other dogs. Video provided by Newsy
Powered by NewsLook.com
Professor Creates Site Revealing Where People's Cats Live

Professor Creates Site Revealing Where People's Cats Live

Newsy (July 23, 2014) ​It's called I Know Where Your Cat Lives, and you can keep hitting the "Random Cat" button to find more real cats all over the world. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins