Science News
from research organizations

Largest ever gas mix caught in ultra-freeze trap

Date:
December 15, 2011
Source:
Springer Science+Business Media
Summary:
A team of scientists have made it easier to study atomic or subatomic-scale properties of the building blocks of matter (which also include protons, neutrons and electrons) known as fermions by slowing down the movement of a large quantity of gaseous atoms at ultra-low temperature.
Share:
       
Total shares:  
FULL STORY

Scientists are working toward a better understanding of subatomic particles using a new cold-atom setup. A new method involves confining gaseous atoms under an ultra-high vacuum using electromagnetic forces, in an ultra-freeze trap of sorts.
Credit: Image courtesy of Springer Science+Business Media

A team of scientists have made it easier to study atomic or subatomic-scale properties of the building blocks of matter (which also include protons, neutrons and electrons) known as fermions by slowing down the movement of a large quantity of gaseous atoms at ultra-low temperature.

This is according to a study recently published in The European Physical Journal D as part of a cold quantum matter special issue, by researchers from the Paris-based École Normale Supérieure and the Non-Linear Institute at Nice Sophia-Antipolis University in France.

Thanks to the laser cooling method for which Claude Cohen-Tannoudji, Steven Chu and William D. Phillips received the Nobel Prize in 1997, Armin Ridinger and his colleagues succeeded in creating the largest Lithium 6 (6Li) and Potassium 40 (40K) gas mixture to date. The method used involved confining gaseous atoms under an ultra-high vacuum using electromagnetic forces, in an ultra-freeze trap of sorts.

This trap enabled them to load twice as many atoms than previous attempts at studying such gas mixtures, reaching a total on the order of a few billion atoms under study at a temperature of only a few hundred microKelvins (corresponding to a temperature near the absolute zero of roughly −273 °C).

Given that the results of this study significantly increased the number of gaseous atoms under study, it will facilitate future simulation of subatomic-scale phenomena in gases. In particular, it will enable future experiments in which the gas mixture is brought to a so-called degenerate state characterised by particles of different species with very strong interactions. Following international efforts to produce the conditions to study subatomic-scale properties of matter under the quantum simulation program, this could ultimately help scientists to understand quantum mechanical phenomena occurring in neutron stars and so-called many-body problems such as high-temperature superconductivity.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Ridinger, S. Chaudhuri, T. Salez, U. Eismann, D. R. Fernandes, K. Magalhães, D. Wilkowski, C. Salomon, F. Chevy. Large atom number dual-species magneto-optical trap for fermionic 6Li and 40K atoms. The European Physical Journal D, 2011; 65 (1-2): 223 DOI: 10.1140/epjd/e2011-20069-4

Cite This Page:

Springer Science+Business Media. "Largest ever gas mix caught in ultra-freeze trap." ScienceDaily. ScienceDaily, 15 December 2011. <www.sciencedaily.com/releases/2011/12/111213092037.htm>.
Springer Science+Business Media. (2011, December 15). Largest ever gas mix caught in ultra-freeze trap. ScienceDaily. Retrieved May 22, 2015 from www.sciencedaily.com/releases/2011/12/111213092037.htm
Springer Science+Business Media. "Largest ever gas mix caught in ultra-freeze trap." ScienceDaily. www.sciencedaily.com/releases/2011/12/111213092037.htm (accessed May 22, 2015).

Share This Page:


Matter & Energy News
May 22, 2015

Latest Headlines
updated 12:56 pm ET