Featured Research

from universities, journals, and other organizations

Microneedle sensors may allow real-time monitoring of body chemistry

Date:
December 14, 2011
Source:
North Carolina State University
Summary:
Researchers have developed new technology that uses microneedles to allow doctors to detect real-time chemical changes in the body -- and to continuously do so for an extended period of time.

Scanning electron micrograph of a hollow microneedle. In this study, hollow microneedles were integrated with sensors for detection of glucose, lactate, and pH levels.
Credit: Image courtesy of North Carolina State University

Researchers from North Carolina State University, Sandia National Laboratories, and the University of California, San Diego have developed new technology that uses microneedles to allow doctors to detect real-time chemical changes in the body -- and to continuously do so for an extended period of time.

"We've loaded the hollow channels within microneedles with electrochemical sensors that can be used to detect specific molecules or pH levels," says Dr. Roger Narayan, co-author of a paper describing the research, and a professor in the joint biomedical engineering department of NC State's College of Engineering and the University of North Carolina at Chapel Hill.

Existing technology relies on taking samples and testing them, whereas this approach allows continuous monitoring, Narayan explains. "For example, it could monitor glucose levels in a diabetic patient," Narayan says. Microneedles are very small needles in which at least one dimension -- such as length -- is less than one millimeter.

"The idea is that customized microneedle sensor arrays could be developed and incorporated into wearable devices, such as something like a wristwatch, to help answer specific medical or research questions," Narayan says. "It's also worth pointing out that microneedles are not painful."

In addition to its clinical applications, the new technology may also create opportunities for new research endeavors. For example, the microneedle sensor arrays could be used to track changes in lactate levels while people are exercising -- rather than measuring those levels only before and after exercise.

The researchers developed a proof-of-concept sensor array incorporating three types of sensors, which could measure pH, glucose and lactate. However, Narayan says the array could be modified to monitor a wide variety of chemicals.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Philip R. Miller, Shelby A. Skoog, Thayne L. Edwards, Deanna M. Lopez, David R. Wheeler, Dulce C. Arango, Xiaoyin Xiao, Susan M. Brozik, Joseph Wang, Ronen Polsky, Roger J. Narayan. Multiplexed microneedle-based biosensor array for characterization of metabolic acidosis. Talanta, 2011; DOI: 10.1016/j.talanta.2011.11.046

Cite This Page:

North Carolina State University. "Microneedle sensors may allow real-time monitoring of body chemistry." ScienceDaily. ScienceDaily, 14 December 2011. <www.sciencedaily.com/releases/2011/12/111213110243.htm>.
North Carolina State University. (2011, December 14). Microneedle sensors may allow real-time monitoring of body chemistry. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2011/12/111213110243.htm
North Carolina State University. "Microneedle sensors may allow real-time monitoring of body chemistry." ScienceDaily. www.sciencedaily.com/releases/2011/12/111213110243.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins