Featured Research

from universities, journals, and other organizations

Almost noiseless nanomechanical microwave amplifier

Date:
December 20, 2011
Source:
Aalto University
Summary:
Physicists have shown how a nanomechanical oscillator can be used for detection and amplification of feeble radio waves or microwaves. A measurement using such a tiny device, resembling a miniaturized guitar string, can be performed with the least possible disturbance.

Researchers have shown how to detect and amplify electromagnetic signals almost noiselessly using a guitar-string like mechanical vibrating wire. In the ideal case the method adds only the minimum amount of noise required by quantum mechanics.
Credit: Image courtesy of Aalto University

Physicists in Aalto University, Finland, have shown how a nanomechanical oscillator can be used for detection and amplification of feeble radio waves or microwaves. A measurement using such a tiny device, resembling a miniaturized guitar string, can be performed with the least possible disturbance. The results were recently published in the British journal Nature.

The researchers cooled the nanomechanical oscillator, thousand times thinner than a human hair, down to a low temperature near the absolute zero at -273 centigrade. Under such extreme conditions, even nearly macroscopic sized objects follow the laws of quantum physics which often contradict common sense. In the Low Temperature Laboratory experiments, the nearly billion atoms comprising the nanomechanical resonator were oscillating in pace in their shared quantum state.

The scientists had fabricated the device in contact with a superconducting cavity resonator, which exchanges energy with the nanomechanical resonator. This allowed amplification of their resonant motion. This is very similar to what happens in a guitar, where the string and the echo chamber resonate at the same frequency. Instead of the musician playing the guitar string, the energy source was provided by a microwave laser.

Microwaves get amplified by interaction of quantum oscillations

Researchers from the Low Temperature Laboratory, Aalto University, have shown how to detect and amplify electromagnetic signals almost noiselessly using a guitar-string like mechanical vibrating wire. In the ideal case the method adds only the minimum amount of noise required by quantum mechanics.

The presently used semiconductor transistor amplifiers are complicated and noisy devices, and operate far away from a fundamental disturbance limit set by quantum physics. The Low Temperature Laboratory scientists showed that by taking advantage of the quantum resonant motion, injected microwave radiation can be amplified with little disturbance. The principle hence allows for detecting much weaker signals than usually.

"Any measurement method or device always adds some disturbance. Ideally, all the noise is due vacuum fluctuations predicted by quantum mechanics. In theory, our principle reaches this fundamental limit. In the experiment, we got very close to this limit," says Dr. Francesco Massel.

"The discovery was actually quite unexpected. We were aiming to cool the nanomechanical resonator down to its quantum ground state. The cooling should manifest as a weakening of a probing signal, which we observed. But when we slightly changed the frequency of the microwave laser, we saw the probing signal to strengthen enormously. We had created a nearly quantum limited microwave amplifier," says Academy Research Fellow Mika Sillanpää who planned the project and made the measurements.

Certain real-life applications will benefit from the better amplifier based on the new Aalto method, but reaching this stage requires more research effort. Most likely, the mechanical microwave amplifier will be first applied in related basic research, which will further expand our knowledge of the borderline between the everyday world and the quantum realm.

According to Academy Research Fellow Tero Heikkilä, the beauty of the amplifier is in its simplicity: it consists of two coupled oscillators. Therefore, the same method can be realized in basically any media. By using a different structure of the cavity, one could detect terahertz radiation which would also be a major application.

The research was carried out in the Low Temperature Laboratory, which belongs to the Aalto University School of Science, and is part of the Centre of Excellence in Low Temperature Quantum Phenomena and Devices of the Finnish Academy. The devices used in the measurements were fabricated by VTT Nanotechnologies and microsystems. The research was funded by the Finnish Academy, European Research Council ERC, and the European Union.


Story Source:

The above story is based on materials provided by Aalto University. Note: Materials may be edited for content and length.


Journal Reference:

  1. F. Massel, T. T. Heikkilä, J.-M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, M. A. Sillanpää. Microwave amplification with nanomechanical resonators. Nature, 2011; 480 (7377): 351 DOI: 10.1038/nature10628

Cite This Page:

Aalto University. "Almost noiseless nanomechanical microwave amplifier." ScienceDaily. ScienceDaily, 20 December 2011. <www.sciencedaily.com/releases/2011/12/111215094813.htm>.
Aalto University. (2011, December 20). Almost noiseless nanomechanical microwave amplifier. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2011/12/111215094813.htm
Aalto University. "Almost noiseless nanomechanical microwave amplifier." ScienceDaily. www.sciencedaily.com/releases/2011/12/111215094813.htm (accessed September 16, 2014).

Share This



More Matter & Energy News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) — New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com
Frustration As Drone Industry Outpaces Regulation In U.S.

Frustration As Drone Industry Outpaces Regulation In U.S.

Newsy (Sep. 14, 2014) — U.S. firms worry they’re falling behind in the marketplace as the FAA considers how to regulate commercial drones. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins