Featured Research

from universities, journals, and other organizations

Quantum computing has applications in magnetic imaging

Date:
December 20, 2011
Source:
University of Pittsburgh
Summary:
Quantum computing -- considered the powerhouse of computational tasks -- may have applications in areas outside of pure electronics, according to experts.

Quantum computing -- considered the powerhouse of computational tasks -- may have applications in areas outside of pure electronics, according to a University of Pittsburgh researcher and his collaborators.

Related Articles


Working at the interface of quantum measurement and nanotechnology, Gurudev Dutt, assistant professor in Pitt's Department of Physics and Astronomy in the Kenneth P. Dietrich School of Arts and Sciences, and his colleagues report their findings in a paper published online Dec. 18 in Nature Nanotechnology. The paper documents important progress towards realizing a nanoscale magnetic imager comprising single electrons encased in a diamond crystal.

"Think of this like a typical medical procedure -- a Magnetic Resonance Imaging (MRI) -- but on single molecules or groups of molecules inside cells instead of the entire body. Traditional MRI techniques don't work well with such small volumes, so an instrument must be built to accommodate such high-precision work," says Dutt.

However, a significant challenge arose for researchers working on the problem of building such an instrument: How does one measure a magnetic field accurately using the resonance of the single electrons within the diamond crystal? Resonance is defined as an object's tendency to oscillate with higher energy at a particular frequency, and occurs naturally all around us: for example, with musical instruments, children on swings, and pendulum clocks. Dutt says that resonances are particularly powerful because they allow physicists to make sensitive measurements of quantities like force, mass, and electric and magnetic fields. "But they also restrict the maximum field that one can measure accurately."

In magnetic imaging, this means that physicists can only detect a narrow range of fields from molecules near the sensor's resonant frequency, making the imaging process more difficult.

"It can be done," says Dutt, "but it requires very sophisticated image processing and other techniques to understand what one is imaging. Essentially, one must use software to fix the limitations of hardware, and the scans take longer and are harder to interpret."

Dutt -- working with postdoctoral researcher Ummal Momeen and PhD student Naufer Nusran (A&S'08 G), both in Pitt's Department of Physics and Astronomy -- has used quantum computing methods to circumvent the hardware limitation to view the entire magnetic field. By extending the field, the Pitt researchers have improved the ratio between maximum detectable field strength and field precision by a factor of 10 compared to the standard technique used previously. This puts them one step closer toward a future nanoscale MRI instrument that could study properties of molecules, materials, and cells in a noninvasive way, displaying where atoms are located without destroying them; current methods employed for this kind of study inevitably destroy the samples.

"This would have an immediate impact on our understanding of these molecules, materials, or living cells and potentially allow us to create better technologies," says Dutt.

These are only the initial results, says Dutt, and he expects further improvements to be made with additional research: "Our work shows that quantum computing methods reach beyond pure electronic technologies and can solve problems that, earlier, seemed to be fundamental roadblocks to making progress with high-precision measurements."


Story Source:

The above story is based on materials provided by University of Pittsburgh. Note: Materials may be edited for content and length.


Journal Reference:

  1. N. M. Nusran, M. Ummal Momeen, M. V. Gurudev Dutt. High-dynamic-range magnetometry with a single electronic spin in diamond. Nature Nanotechnology, 2011; DOI: 10.1038/nnano.2011.225

Cite This Page:

University of Pittsburgh. "Quantum computing has applications in magnetic imaging." ScienceDaily. ScienceDaily, 20 December 2011. <www.sciencedaily.com/releases/2011/12/111219135221.htm>.
University of Pittsburgh. (2011, December 20). Quantum computing has applications in magnetic imaging. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2011/12/111219135221.htm
University of Pittsburgh. "Quantum computing has applications in magnetic imaging." ScienceDaily. www.sciencedaily.com/releases/2011/12/111219135221.htm (accessed October 24, 2014).

Share This



More Computers & Math News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Apps to Organize Your Life

The Best Apps to Organize Your Life

Buzz60 (Oct. 23, 2014) — Need help organizing your bills, schedules and other things? Ko Im (@konakafe) has the best apps to help you stay on top of it all! Video provided by Buzz60
Powered by NewsLook.com
Nike And Apple Team Up To Create Wearable ... Something

Nike And Apple Team Up To Create Wearable ... Something

Newsy (Oct. 23, 2014) — For those looking for wearable tech that's significantly less nerdy than Google Glass, Nike CEO Mark Parker says don't worry, It's on the way. Video provided by Newsy
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins