Featured Research

from universities, journals, and other organizations

Turn 'signals' for neuron growth identified

Date:
December 25, 2011
Source:
University of California - Irvine
Summary:
Researchers have discovered how spinning microparticles can direct the growth of nerve fiber, a discovery that could allow for directed growth of neuronal networks on a chip and improve methods for treating spinal or brain injuries.

Time-lapse images when a Vaterite particle is rotated anticlockwise and positioned to the left of the axon defined by the growth direction of the axon (dashed arrow 1).
Credit: From Nature Photonics

A new paper scheduled for publication in the January issue of Nature Photonics describes the use of spinning microparticles to direct the growth of nerve fiber, a discovery that could allow for directed growth of neuronal networks on a chip and improve methods for treating spinal or brain injuries.

Samarendra Mohanty, an assistant professor of physics at The University of Texas at Arlington, is a coauthor of the paper, which is now available online.

The study is based on Mohanty's hypothesis that neurons can respond to physical (e.g. fluid flow) cues in addition to chemical cues. He conducted the seminal work and observed that a laser-driven spinning calcite microparticle could guide the direction of neuron growth. Its rotation caused a shearing effect by creating a microfluidic flow.

Mohanty's work led the University of California, Irvine team led by Professor Michael Berns to test the vaterite "micro-motors" in guiding neurons.

Mohanty said: "This is the first report to demonstrate that neurons can be turned in a controlled manner by microfluidic flow. With this method, we can direct them to turn right or turn left and we can quickly insert or remove the rotating beads as needed. But flow can be generated by any means. In the body, for example, it will be more convenient to use a tube carrying fluids."

The researchers in the UC Irvine experiments used a laser tweezers system to trap a birefringent particle (calcite or vaterite) near axonal growth cones, which are the tips of neurons where connections are made with other neurons or cells. The same laser causes rotation of the particle, which creates the flow, Mohanty said.

The paper reports that the new method successfully turned the growing axon in a new direction up to 42 percent of the time in lab experiments. The authors noted that the method could also be used to funnel growth between two rotating particles. The effects also may be reproducible on a larger scale, they said.

"One can envision large arrays of these devices that can direct large numbers of axons to different locations," the authors wrote. "This may have the potential for use in vivo to direct regenerating axons to mediate brain and spinal cord repair."

Mohanty said that during neurogenesis -- the process by which neurons grow and develop in a fetus -- flow of spinal fluid can influence guidance of neurons to their destinations. His lab at UT Arlington is currently developing a novel optical method that allows long-range optical guidance of neurons with 100 percent efficacy without use of any additional external objects.

In addition to UC Irvine and UT Arlington, other authors on the Nature Photonics study hail from the Quantum Science Laboratory at The University of Queensland in Australia.

The paper said the experiments shed valuable light on the effect of shear or lateral forces on neuron growth and that knowledge may even apply to other forms of cell growth.


Story Source:

The above story is based on materials provided by University of California - Irvine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tao Wu, Timo A. Nieminen, Samarendra Mohanty, Jill Miotke, Ronald L. Meyer, Halina Rubinsztein-Dunlop, Michael W. Berns. A photon-driven micromotor can direct nerve fibre growth. Nature Photonics, 2011; DOI: 10.1038/nphoton.2011.287

Cite This Page:

University of California - Irvine. "Turn 'signals' for neuron growth identified." ScienceDaily. ScienceDaily, 25 December 2011. <www.sciencedaily.com/releases/2011/12/111220102632.htm>.
University of California - Irvine. (2011, December 25). Turn 'signals' for neuron growth identified. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2011/12/111220102632.htm
University of California - Irvine. "Turn 'signals' for neuron growth identified." ScienceDaily. www.sciencedaily.com/releases/2011/12/111220102632.htm (accessed April 19, 2014).

Share This



More Health & Medicine News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com
Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins