Featured Research

from universities, journals, and other organizations

Researchers use light to measure cancer cells' response to treatment

Date:
December 23, 2011
Source:
Optical Society of America
Summary:
Many cancer therapies target specific proteins that proliferate on the outside of some cancer cells, but the therapies are imperfect and the cancer does not always respond. Researchers have now demonstrated a new way to optically test cultured cancer cells' response to a particular cancer drug.

This optical redox ratio image visualizes the metabolism of HER2 overexpressing breast cancer cells. The brighter yellow color indicates areas of altered metabolism.
Credit: Alex Walsh, Vanderbilt University

Many cancer therapies target specific proteins that proliferate on the outside of some cancer cells, but the therapies are imperfect and the cancer does not always respond. Since it is beneficial for doctors to know as soon as possible how a cancer is affected by treatment, researchers from Vanderbilt University are striving to design tests that assess treatment response rapidly, accurately, and cost-effectively. The team has demonstrated a new way to optically test cultured cancer cells' response to a particular cancer drug.

The results appear in the December issue of the Optical Society's (OSA) open-access journal Biomedical Optics Express.

Certain cancer cells display a higher-than-normal number of proteins called human epidermal growth factor receptor 2 (HER2). In healthy cells, HER2 helps mediate cell growth, but overexpression of HER2 can mark one of the most aggressive forms of breast cancer. Drugs that bind to and block growth factor receptors have been shown to prolong life in some cancer patients, but about 30 percent of HER2 overexpressing tumors do not respond to the drug. Tests to identify these non-responding tumors early on would help doctors make important treatment decisions that could improve patient outcomes.

To design such a test, the Vanderbilt team took advantage of the fact that some cancer cells preferentially use a different metabolic pathway when compared to normal cells. The researchers visualized the relative use of the different pathways by shining the cells with frequencies of light that caused two different metabolic molecules to naturally fluoresce. They then calculated a ratio between the two levels of fluorescence, called an optical redox ratio. The team found that, of the different cell lines they tested, HER2 overexpressing cells had the highest optical redox ratio. They also found that when HER2 cancer cells were treated with an HER2-blocking drug, the ratio decreased. This decrease, however, was not observed in cancer cells that were resistant to the drug. The findings lay the groundwork for future in vivo studies and hold the promise that real-time tumor response to treatment might be measured optically.


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alex Walsh, Rebecca S. Cook, Brent Rexer, Carlos L. Arteaga, Melissa C. Skala. Optical imaging of metabolism in HER2 overexpressing breast cancer cells. Biomedical Optics Express, 2011; 3 (1): 75 DOI: 10.1364/BOE.3.000075

Cite This Page:

Optical Society of America. "Researchers use light to measure cancer cells' response to treatment." ScienceDaily. ScienceDaily, 23 December 2011. <www.sciencedaily.com/releases/2011/12/111220133755.htm>.
Optical Society of America. (2011, December 23). Researchers use light to measure cancer cells' response to treatment. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2011/12/111220133755.htm
Optical Society of America. "Researchers use light to measure cancer cells' response to treatment." ScienceDaily. www.sciencedaily.com/releases/2011/12/111220133755.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins