Featured Research

from universities, journals, and other organizations

Nanometer-scale growth of cone cells tracked in living human eye

Date:
December 22, 2011
Source:
Optical Society of America
Summary:
Vision scientists have come up with a novel way to make the measurements in a living human retina by using information hidden within a commonly used technique called optical coherence tomography.

Projection of the cone mosaic, produced by co-adding intensity from the inner segment outer segment junction (ISOS) and outer segment posterior tip (PT) layers, segmented from a single AO-OCT volume. The bright spots correspond to individual cones. Each cone is ~5 μm in diameter. Scale bar 50 μm. (Upper right) En face projection of the outer segment referenced phase, created by subtracting the phase at ISOS from the phase at PT. Phase correlation is apparent, at a scale similar to that of the intensity projection. Scale bar 50 μm. (Lower left) Autocorrelation of the intensity projection, possessing the stereotypical appearance of a uniformly packed mosaic. The distance between concentric peaks agrees with the predicted cone row spacing. Scale bar 5 μm. (Lower right) Autocorrelation of the referenced phase projection, lacking the concentric rings observed in the intensity autocorrelation. Scale bar 5 μm. The similarity between autocorrelations' central peaks suggests that both intensity and phase are correlated among pixels within the cone, while the dissimilarity between the tails suggests that periodicity exists in the intensity image but not in the phase image.
Credit: Ravi Jonnal, Indiana University.

Humans see color thanks to cone cells, specialized light-sensing neurons located in the retina along the inner surface of the eyeball. The actual light-sensing section of these cells is called the outer segment, which is made up of a series of stacked discs, each about 30 nanometers (billionths of a meter) thick. This appendage goes through daily changes in length.

Related Articles


Scientists believe that a better understanding of how and why the outer segment grows and shrinks will help medical researchers identify potential retinal problems. But the methods usually used to image the living human eye are not sensitive enough to measure these miniscule changes. Now, vision scientists at Indiana University in Bloomington have come up with a novel way to make the measurements in a living human retina by using information hidden within a commonly used technique called optical coherence tomography (OCT). They discuss their results in the Optical Society's (OSA) open-access journal Biomedical Optics Express.

To make an OCT scan of the retina, a beam of light is split into two. One beam scatters off the retina while the other is preserved as a reference. The light waves begin in synch, or in phase, with each other; when the beams are reunited, they are out of phase, due to the scattering beam's interactions with retinal cells. Scientists can use this phase information to procure a precise measurement of a sample's position. But since in this case their samples were attached to live subjects, the researchers had to adapt these typical phase techniques to counteract any movements that the subjects' eyes might insert into the data.

Instead of measuring the phase of a single interference pattern, the researchers measured phase differences between patterns originating from two reference points within the retinal cells: the top and bottom of the outer segment. The team used this hidden phase information to measure microscopic changes in hundreds of cones, over a matter of hours, in two test subjects with normal vision. Researchers found they could resolve the changes in length down to about 45 nanometers, which is just slightly longer than the thickness of a single one of the stacked discs that make up the outer segment. The work shows that the outer segments of the cone cells grow at a rate of about 150 nanometers per hour, which is about 30 times faster than the growth rate of a human hair.


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ravi S. Jonnal, Omer P. Kocaoglu, Qiang Wang, Sangyeol Lee, Donald T. Miller. Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics. Biomedical Optics Express, 2011; 3 (1): 104 DOI: 10.1364/BOE.3.000104

Cite This Page:

Optical Society of America. "Nanometer-scale growth of cone cells tracked in living human eye." ScienceDaily. ScienceDaily, 22 December 2011. <www.sciencedaily.com/releases/2011/12/111220133759.htm>.
Optical Society of America. (2011, December 22). Nanometer-scale growth of cone cells tracked in living human eye. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2011/12/111220133759.htm
Optical Society of America. "Nanometer-scale growth of cone cells tracked in living human eye." ScienceDaily. www.sciencedaily.com/releases/2011/12/111220133759.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins