Featured Research

from universities, journals, and other organizations

New material cools under pressure

Date:
December 23, 2011
Source:
Universidad de Barcelona
Summary:
Researchers have identified a new material that exhibits an inverse barocaloric effect at room temperature, which means that it cools when pressure is applied, unlike most other materials.

Unlike most materials, the new material cools when pressure is applied.
Credit: Image courtesy of Universidad de Barcelona

Research led by a team from the University of Barcelona, published in the online version of the journal Nature Communications, has identified a new material that exhibits an inverse barocaloric effect at room temperature, which means that it cools when pressure is applied, unlike most other materials. The study, carried out within the framework of Barcelona Knowledge Campus (BKC), also included work by researchers from the Polytechnic University of Catalonia. BarcelonaTech (UPC), the University of Duisburg-Essen (Germany) and the Indian Association for the Cultivation of Science.

Related Articles


The barocaloric effect refers to the change in temperature produced in a material by the application of hydrostatic pressure. Most objects heat up when compressed and cool down when decompressed, but some solids display the opposite behaviour: their temperature decreases when they are compressed and increases when they are decompressed. Lluís Mañosa, UB professor, explains: "This highly unusual behaviour is what we have termed the inverse barocaloric effect. In our study we have found a material which exhibits a substantial change at moderate pressures: its temperature drops by 1ºC for each additional 1 kbar of pressure."

During the study, the Group on Characterization of Materials at the Polytechnic University of Catalonia. BarcelonaTech (UPC) carried out a characterization of the processes to which the solid material was submitted, at different temperatures and pressures, using a custom system developed by the team.

The material developed during the study is an intermetallic compound of the magnetocaloric metals lanthanum, iron, silicon and cobalt (La-Fe-Si-Co), which change temperature when an external magnetic field is applied. This group of materials is considered to be the most promising for novel refrigeration systems. According to Mañosa, "in the material we studied, the temperature change brought about by moderate pressures is of sufficient magnitude to be considered for use in environmentally respectful refrigeration systems. In addition, the fact that it responds to two types of external stimulus -- magnetic fields and pressure -- would allow for the design of devices that apply these stimuli simultaneously to obtain higher levels of performance."

The inverse barocaloric effect is created by a phase transition in the material below a given temperature, which leads to changes in its structural and magnetic properties. It has recently been suggested that materials displaying this behaviour could also be used in novel energy harvesting systems.


Story Source:

The above story is based on materials provided by Universidad de Barcelona. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lluís Mañosa, David González-Alonso, Antoni Planes, Maria Barrio, Josep-Lluís Tamarit, Ivan S. Titov, Mehmet Acet, Amitava Bhattacharyya, Subham Majumdar. Inverse barocaloric effect in the giant magnetocaloric La–Fe–Si–Co compound. Nature Communications, 2011; 2: 595 DOI: 10.1038/ncomms1606

Cite This Page:

Universidad de Barcelona. "New material cools under pressure." ScienceDaily. ScienceDaily, 23 December 2011. <www.sciencedaily.com/releases/2011/12/111221105643.htm>.
Universidad de Barcelona. (2011, December 23). New material cools under pressure. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2011/12/111221105643.htm
Universidad de Barcelona. "New material cools under pressure." ScienceDaily. www.sciencedaily.com/releases/2011/12/111221105643.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) — A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com
3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
NYPD Gives High Tech Anti-Terror Weapon to 41,000 Officers

NYPD Gives High Tech Anti-Terror Weapon to 41,000 Officers

Buzz60 (Oct. 23, 2014) — New York City officials announce a new technology initiative for the NYPD. Tim Minton reports smartphones and tablets will be given to more than 40,000 NYPD officers and detectives in an effort to change the way they perform their duties. Video provided by Buzz60
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins