Featured Research

from universities, journals, and other organizations

Helping chemistry become more environmentally-friendly

Date:
January 10, 2012
Source:
Elhuyar Fundazioa
Summary:
Chemists often have to resort to destructive methods to analyze samples. For instance, they need to extract samples and apply substances like nitric acid to measure the concentration of metals in sediments. Now researchers are laying foundations so that "greener" techniques can be used in the future.

A researcher has analysed the concentration of metals in the estuary of Bilbao using traditional methods, and has created statistical models with the help of these data; she is hoping that the data obtained through traditional techniques in today's sediments can be used for tomorrow's sediments, and that way, further extractions of samples and the use of destructive substances can be avoided.
Credit: Ainara Gredilla

Chemists often have to resort to destructive methods to analyse samples. For instance, they need to extract samples and apply substances like nitric acid to measure the concentration of metals in sediments. Ainara Gredilla of the University of the Basque Country (UPV/EHU) has laid the first foundations so that "greener" techniques can be used in the future.

She has analysed the concentration of metals in the estuary of Bilbao using traditional methods, and has created statistical models with the help of these data; she is hoping that the data obtained through traditional techniques in today's sediments can be used for tomorrow's sediments, and that way, further extractions of samples and the use of destructive substances can be avoided.

Her thesis is entitled Metalak eta metaloideak itsasadarretan: kutsadura jarraitzeko erreminta analitikoen garapena (Metals and metalloids in estuaries: development of analytical tools for monitoring contamination).

The work was carried out by the Analytical Research and Innovation (IBeA) group. In actual fact, her thesis supervisor and IBeA colleague Silvia Fernandez studied the concentrations of metal in the waters and sediments of the Nervión-Ibaizabal estuary (Bilbao) between 2005 and 2007, and Gredilla has followed up that piece of research. She gathered samples every three months, between April 2008 and October 2010. "I conducted a more specific spatial observation. We usually take samples of sediments and water in eight spots, but in this case we did so in 49," she explains.

The researcher has confirmed that the estuary is improving, but it still contains a higher concentration of metal than it should. She has come across peaks and troughs similar to those of between 2005 and 2007, but there are subtle differences. "As far as metal contaminants are concerned, in the waters an upward trend can be found, whereas in the sediments there is a downward trend," she says. The most robust hypothesis to account for this fact is the movement of contaminants between the sediments and the water: "The contamination comes from a spot located upriver from the estuary, and when salt water enters, the metal particles accumulate in the sediments. But if physico-chemical changes take place in the water, the particles could shift and return to it."

Spectra and chemometrics

However, the advances in 'green' chemistry constitute the main contribution of this work. She has obtained data from the Nervión-Ibaizabal estuary by means of the usual methods, but at the same time these data have enabled her to open up alternative techniques. These consist of infrared spectroscopy and X-rays, and this way it is possible to obtain data on a sediment sample without using chemical substances that destroy the sample.

In actual fact, this researcher has taken steps to interweave the results obtained in the traditional method with those from the alternative method. What happens is that a certain concentration of metal in a sedimentary sample (traditional method) corresponds to a specific projection when infrared spectroscopy or X-rays are applied (alternative method). So if information on the relation between the two values were to be compiled, there would be a possibility of predicting the data on the concentration of metal in each case using 'green' methods alone.

And how does one weave the relational network between these two types of values? By means of chemometrics. In other words, by applying mathematical and statistical methods to chemical data. "We combine the spectra deriving from the X-rays and the infrared spectroscopy with the concentrations of metal obtained through the previous method. So by adding the use of chemometric techniques we have developed some mathematical models. For example, they enable me to analyse 14 metals and come up with a model for each one and thus predict the concentration existing in each case," says Gredilla. This researcher spent three months at the University of Copenhagen during which she learnt the details of chemometric techniques for identifying groups.

So far she has only been able to develop the mathematical models for predicting the metal content on a theoretical level, but the aim is that this should be applicable in the future, "that one day it will be possible to determine the metal content of a sediment sample just by focussing X-rays on it. It would not be a question of taking fewer samples, but of making the analysis more straightforward and cutting the cost of it, as well as making it greener." Gredilla is now in fact getting ready to check the reliability of the models developed by applying them to sediments in other rivers worldwide. And she has just been offered the chance to participate in an international project alongside various European and South American researchers.


Story Source:

The above story is based on materials provided by Elhuyar Fundazioa. Note: Materials may be edited for content and length.


Cite This Page:

Elhuyar Fundazioa. "Helping chemistry become more environmentally-friendly." ScienceDaily. ScienceDaily, 10 January 2012. <www.sciencedaily.com/releases/2012/01/120110114444.htm>.
Elhuyar Fundazioa. (2012, January 10). Helping chemistry become more environmentally-friendly. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2012/01/120110114444.htm
Elhuyar Fundazioa. "Helping chemistry become more environmentally-friendly." ScienceDaily. www.sciencedaily.com/releases/2012/01/120110114444.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins