Featured Research

from universities, journals, and other organizations

Breakthrough model reveals evolution of ancient nervous systems through seashell colors

Date:
January 12, 2012
Source:
University of Pittsburgh
Summary:
Determining the evolution of pigmentation patterns on mollusk seashells -- which could aid in the understanding of ancient nervous systems -- has proved to be a challenging feat for researchers. Now, however, through mathematical equations and simulations, researchers have used 19 different species of the predatory sea snail Conus to generate a model of the pigmentation patterns of mollusk shells.

The predatory sea snail Conus was used to generate a model of the pigmentation patterns of mollusk shells.
Credit: by-studio / Fotolia

Determining the evolution of pigmentation patterns on mollusk seashells -- which could aid in the understanding of ancient nervous systems -- has proved to be a challenging feat for researchers. Now, however, through mathematical equations and simulations, University of Pittsburgh and University of California, Berkeley, researchers have used 19 different species of the predatory sea snail Conus to generate a model of the pigmentation patterns of mollusk shells.

"There is no evolutionary record of nervous systems, but what you're seeing on the surface of seashells is a space-time record, like the recording of brain-wave activity in an electroencephalogram (EEG)," said project coinvestigator G. Bard Ermentrout, Pitt Distinguished University Professor of Computational Biology and a professor in the Kenneth P. Dietrich School of Arts and Sciences' Department of Mathematics.

Seashells differ substantially between the closely related Conus species, and the complexity of the patterns makes it difficult to properly characterize their similarities and differences. It also has proven difficult to describe the evolution of pigmentation patterns or to draw inferences about how natural selection might affect them. In a paper published in the Jan. 3 issue of the Proceedings of the National Academy of Sciences (PNAS) Online, Ermentrout and his colleagues attempt to resolve this problem by combining models based on natural evolutionary relationships with a realistic developmental model that can generate pigmentation patterns of the shells of the various Conus species.

In order for UC Berkeley scientists to create simulations, Ermentrout and his collaborators developed equations and a neural model for the formation of the pigmentation patterns on shell surfaces. With the equations in hand, Zhenquiang Gong, a UC Berkeley graduate student in engineering, used a computer to simulate the patterns on the shells, hand fitting the parameters to create a basic model for the patterns of a given species.

The results of this study have allowed the researchers to estimate the shell pigmentation patterns of ancestral species, identify lineages in which one or more parameters have evolved rapidly, and measure the degree to which different parameters correlate with the evolutionary development and history of the organisms. Since the parameters are telling the researchers something about the circuitry of the mollusks' nervous system, this is an indirect way to study the evolution of a simple nervous system.

"We've found that some aspects of the nervous system have remained quite stable over time, while there is a rapid evolution of other portions," said Ermentrout.

"In the future, we hope to use similar ideas to understand other pattern-forming systems that are controlled by the nervous system," Ermentrout added. "For instance, we would really like to develop models for some of the cephalopods like the cuttlefish and the octopus, which are able to change patterns on their skin in an instant."


Story Source:

The above story is based on materials provided by University of Pittsburgh. Note: Materials may be edited for content and length.


Journal Reference:

  1. Z. Gong, N. J. Matzke, B. Ermentrout, D. Song, J. E. Vendetti, M. Slatkin, G. Oster. PNAS Plus: Evolution of patterns on Conus shells. Proceedings of the National Academy of Sciences, 2012; DOI: 10.1073/pnas.1119859109

Cite This Page:

University of Pittsburgh. "Breakthrough model reveals evolution of ancient nervous systems through seashell colors." ScienceDaily. ScienceDaily, 12 January 2012. <www.sciencedaily.com/releases/2012/01/120112142301.htm>.
University of Pittsburgh. (2012, January 12). Breakthrough model reveals evolution of ancient nervous systems through seashell colors. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2012/01/120112142301.htm
University of Pittsburgh. "Breakthrough model reveals evolution of ancient nervous systems through seashell colors." ScienceDaily. www.sciencedaily.com/releases/2012/01/120112142301.htm (accessed October 20, 2014).

Share This



More Plants & Animals News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Rare Lion Cubs Make Debut at Belgrade Zoo

Raw: Rare Lion Cubs Make Debut at Belgrade Zoo

AP (Oct. 17, 2014) Two white lion cubs were born in Belgrade zoo three weeks ago. White lions are a rare mutation of a species found in South Africa and some cultures consider them divine. (Oct. 17) Video provided by AP
Powered by NewsLook.com
The Best Foods To Boost Your Mood

The Best Foods To Boost Your Mood

Buzz60 (Oct. 17, 2014) Feeling down? Reach for the refrigerator, not the medicine cabinet! TC Newman (@PurpleTCNewman) shares some of the best foods to boost your mood. Video provided by Buzz60
Powered by NewsLook.com
Sweet Times for Hard Cider Makers

Sweet Times for Hard Cider Makers

AP (Oct. 16, 2014) With hard cider making a hardcore comeback across the country, craft makers are trying to keep up with demand and apple growers are tapping a juicy new revenue stream. (Oct. 16) Video provided by AP
Powered by NewsLook.com
Meet Garfi the Angry Cat

Meet Garfi the Angry Cat

Buzz60 (Oct. 16, 2014) Garfi is one frowny, feisty feline - downright angry! Ko Im (@koimtv) introduces us to the latest animal celebrity taking over the Internet. You can follow more of Garfi's adventures on Twitter (@MeetGarfi) and Facebook (Garfi). Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins