Featured Research

from universities, journals, and other organizations

Inflammatory mediator promotes colorectal cancer by stifling protective genes

Date:
January 25, 2012
Source:
University of Texas M. D. Anderson Cancer Center
Summary:
Chronic inflammation combines with DNA methylation, a process that shuts down cancer-fighting genes, to promote development of colorectal cancer, scientists have discovered.

Chronic inflammation combines with DNA methylation, a process that shuts down cancer-fighting genes, to promote development of colorectal cancer, scientists at The University of Texas MD Anderson Cancer Center have reported in the advance online publication of the journal Nature Medicine.

The team's connection of these two separate influences eventually may lead to better combination therapies for treating and preventing colorectal cancer.

In animal experiments, researchers found that prostaglandin E2, a chemical that promotes inflammation, accelerates the development of colorectal cancer by shutting down genes that suppress tumors and repair damaged DNA. They also found that while either an anti-inflammatory drug or a demethylating agent reduced the size and number of tumors in mice with colorectal cancer, the most powerful response occurred when both drugs were used together.

"We've known that chronic inflammation increases the risk of developing cancer and progression of disease," said senior author Raymond DuBois, M.D., Ph.D., provost and executive vice president at MD Anderson. "We've also known that tumor-suppressing genes are silenced in human colorectal cancer. However, nobody had made a molecular connection between these inflammatory mediators and changes in gene expression or silencing of genes through affects on DNA methylation."

Cancer prevention potential

The two drugs used in the animal experiments -- the anti-inflammatory agent celecoxib (known commercially as Celebrexฎ) and the demethylating agent azacitidine (Vidazaฎ) -- are both approved for human use.

"One potential application of our research would be a clinical trial for patients who are at extremely high risk for developing colorectal cancer, such as those with a genetic predisposition, to see if treatment with these agents would decrease their risk," DuBois said.

Prostaglandin E2 and methylation

Prostaglandin E2 (PGE2) is a lipid mediator found at high levels at sites of inflammation where immune cells are aggregating. DuBois and colleagues looked for correlations between levels of PGE2 and a class of enzymes called DNA methyltransferases, which attach methyl groups (one carbon atom joined to three hydrogen atoms) to the promoter region of genes, blocking gene expression.

"We found that levels of PGE2 correlate with levels of two methyltransferases, DNMT1 and DNMT3, in human colorectal cancer specimens," DuBois said.

Subsequent experiments showed PGE2:

  • Directly increased levels of both methylating enzymes in three human colorectal cancer cell lines;
  • Increased the silencing by methylation of the tumor-suppressor gene CNR1 and the DNA repair gene MGMT;
  • Also expanded methylation of a variety of other DNA repair genes, most importantly silencing CDKN2B and MLH1, which repairs DNA mismatches.

PGE2 silences protective genes in mice

Treating mice that are genetically altered to develop colon tumors with PGE2 increased:

  • Levels of the methyltransferase gene expression in tumor cells;
  • Methylation of the four tumor-suppressing genes, which reduced the expression of their corresponding messenger RNA and protein levels in tumor cells; and
  • Size and number of precancerous polyps.

Giving those mice the demethylating agent azacitidine reversed the effect of PGE2 on tumor growth and on the silencing of tumor-suppressing and DNA repair genes.

Mice treated with azacitidine alone experienced a 60 percent reduction in tumors, and those treated with celecoxib alone, a 77 percent tumor reduction. Treatment with both drugs in tandem cut the number of tumors by 93 percent. All three regimens also reduced the average size of tumors; however, the combination therapy led to the greatest decrease, cutting the size of tumors by half.

Same correlations evident in human colorectal cancers

The researchers found that various processes observed in mice -- such as inflammation promotion through PGE2 and another inflammatory agent called PTGS2, methlytransferases DNMT1 and DNMT3B, and the methylation of CNR1, MGMT and MLH1 -- are all positively associated in human colorectal cancer, as well.

"These mouse studies make us optimistic that we can extrapolate our data to help treat humans," DuBois said. "Improved understanding of PGE2's roles in cancer progression and the regulation of DNA methylation may provide the basis for developing combination therapy to treat targeted groups of patients, and to prevent cancer from occurring or recurring in high-risk groups."

Co-authors with DuBois are first author Dianren Xia, Ph.D., Dingzhi Wang, Ph.D., Sun-Hee Kim, Ph.D., and Hiroshi Katoh, Ph.D., of MD Anderson's Department of Cancer Biology. DuBois has appointments in both Cancer Biology and the Department of Gastrointestinal Medical Oncology.

Funding for this research was provided by grants from the National Institute of Diabetes and Digestive and Kidney Diseases, the National Cancer Institute and the Cancer Prevention and Research Institute of Texas.


Story Source:

The above story is based on materials provided by University of Texas M. D. Anderson Cancer Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dianren Xia, Dingzhi Wang, Sun-Hee Kim, Hiroshi Katoh, Raymond N DuBois. Prostaglandin E2 promotes intestinal tumor growth via DNA methylation. Nature Medicine, 2012; DOI: 10.1038/nm.2608

Cite This Page:

University of Texas M. D. Anderson Cancer Center. "Inflammatory mediator promotes colorectal cancer by stifling protective genes." ScienceDaily. ScienceDaily, 25 January 2012. <www.sciencedaily.com/releases/2012/01/120122152540.htm>.
University of Texas M. D. Anderson Cancer Center. (2012, January 25). Inflammatory mediator promotes colorectal cancer by stifling protective genes. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2012/01/120122152540.htm
University of Texas M. D. Anderson Cancer Center. "Inflammatory mediator promotes colorectal cancer by stifling protective genes." ScienceDaily. www.sciencedaily.com/releases/2012/01/120122152540.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

$15B Deal on Vets' Health Care Reached

$15B Deal on Vets' Health Care Reached

AP (July 28, 2014) — A bipartisan deal to improve veterans health care would authorize at least $15 billion in emergency spending to fix a veterans program scandalized by long patient wait times and falsified records. (July 28) Video provided by AP
Powered by NewsLook.com
Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) — The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) — A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins