Featured Research

from universities, journals, and other organizations

Ultrafast magnetic processes observed 'live' using an X-ray laser

Date:
January 23, 2012
Source:
Paul Scherrer Institut (PSI)
Summary:
In first-of-their-kind experiments, scientists have been able to precisely follow how the magnetic structure of a material changes. The study was carried out on cupric oxide (CuO). The change of structure was initiated by a laser pulse, and then, with the help of short X-ray pulses, near-instantaneous images were obtained at different points in time for individual intermediate steps during the process.

Detail of the structure of cupric oxide (CuO). The copper atoms (green) carry a magnetic moment, behaving like small compass needles. The direction of the magnetic moment is illustrated by a red arrow. A point means that the arrow is pointing out of the surface (we are looking at its sharp end), a cross shows that the arrow is pointing into the surface (we are looking at its tail end). The magnetic structure changes significantly as the temperature increases above 213 Kelvin (around -60°C). One aspect of this change is a difference in the period of the magnetic order. Unlike the ordering at low temperatures, the magnetic structure in the temperature range 213 K to 230 K is incommensurate: its period does not ‘fit’ with the period of the crystal structure of copper and oxygen atoms. To be precise, a full rotation of the direction of the magnetic moment does not require exactly four atomic separations, but a little more or a little less, depending on the direction.
Credit: Image courtesy of Paul Scherrer Institut (PSI)

In first-of-their-kind experiments performed at the American X-ray laser LCLS, a collaboration led by researchers from the Paul Scherrer Institute has been able to precisely follow how the magnetic structure of a material changes.

The study was carried out on cupric oxide (CuO). The change of structure was initiated by a laser pulse, and then, with the help of short X-ray pulses, near-instantaneous images were obtained at different points in time for individual intermediate steps during the process. It appears as if the structure begins to change 400 femtoseconds after the laser pulse strikes (1 femtosecond = 0.000 000 000 000 001 seconds). Apparently, the fundamental magnets within the material need that much time to communicate with each other and then react. In addition to this scientific result, the work proves that it is actually possible with X-ray lasers to follow certain types of extremely rapid magnetic processes.

This is another milestone, because such investigations will also be a major focus of research at the planned Swiss X-ray Laser, SwissFEL, at PSI. The results could contribute to the development of new technologies for magnetic storage media for the future.

The researchers have reported on their work in the latest edition of the technical journal Physical Review Letters (PRL).

Materials with particular magnetic properties are the basis of many current technologies, in particular, data storage on hard discs and in other media. For this, the magnetic orientation in the material is most often used: the atoms in the material behave to some extent like tiny rod magnets ("spins"). These mini-magnets can be oriented in different ways and information can be stored through their orientation. For efficient data storage, it is crucial that old data can be rapidly overwritten. This is possible if the magnetic orientation in a material can be altered in a very short time. To develop innovative materials which can store data quickly, it is therefore important to understand exactly how this change occurs as a function of time.

Magnetic orientation in motion

In experiments performed at the X-ray laser LCLS at Stanford, California, a collaboration led by researchers from the Paul Scherrer Institute have been able to study the magnetic orientation in cupric oxide, CuO. This material demonstrates completely different magnetic orientations depending on temperature: Below -60°C, the spins, which function in the copper atoms (Cu) like magnets, point periodically in one direction and then the opposite; between -60°C and -43°C, they are arranged helically, as if they were forming a spiral staircase. Although the spin orientations for the two arrangements have been known for some time, the time required to move from one arrangement to the other has only now been shown by the experiment.

"In our investigation, we began with a 'cold' sample and then heated it with an intense flash of light from an optical laser," explains Steven Johnson, spokesman for the PSI experiment. "Shortly after this, we determined the structure of the sample by illuminating it with an extremely short pulse from an X-ray laser. When we repeated this at different time intervals between the flash of light and the X-ray pulse, we were able to reconstruct the course of the change in the magnetic structure."

Mini-magnets need 400 femtoseconds to agree amongst themselves.

The results show that it takes about 400 femtoseconds before the magnetic structure begins to alter visibly. Then the structure gradually reaches its final state. The more intense the initiating flash of light, the faster the change of state. "The spins of all copper atoms are involved in the magnetic structure. Thus the atoms at opposite ends of the material must be coordinated before the structure can change. This takes 400 femtoseconds," explains Urs Staub, one of the PSI researchers responsible. "For cupric oxide, that is the fundamental limit; it simply cannot happen faster than that. This depends upon how strongly the spins are coupled between neighbouring atoms."

There is a good reason why the researchers were particularly interested in cupric oxide. Along with the screw-like magnetic orientation that occurs between -60°C and -43°C, the material is also 'multiferroic', a material where electrical and magnetic processes mutually influence one another. These materials have many different potential areas of application where magnetism and electronics interact.


Story Source:

The above story is based on materials provided by Paul Scherrer Institut (PSI). Note: Materials may be edited for content and length.


Journal Reference:

  1. S. Johnson, R. de Souza, U. Staub, P. Beaud, E. Möhr-Vorobeva, G. Ingold, A. Caviezel, V. Scagnoli, W. Schlotter, J. Turner, O. Krupin, W.-S. Lee, Y.-D. Chuang, L. Patthey, R. Moore, D. Lu, M. Yi, P. Kirchmann, M. Trigo, P. Denes, D. Doering, Z. Hussain, Z.-X. Shen, D. Prabhakaran, A. Boothroyd. Femtosecond Dynamics of the Collinear-to-Spiral Antiferromagnetic Phase Transition in CuO. Physical Review Letters, 2012; 108 (3) DOI: 10.1103/PhysRevLett.108.037203

Cite This Page:

Paul Scherrer Institut (PSI). "Ultrafast magnetic processes observed 'live' using an X-ray laser." ScienceDaily. ScienceDaily, 23 January 2012. <www.sciencedaily.com/releases/2012/01/120123123355.htm>.
Paul Scherrer Institut (PSI). (2012, January 23). Ultrafast magnetic processes observed 'live' using an X-ray laser. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/01/120123123355.htm
Paul Scherrer Institut (PSI). "Ultrafast magnetic processes observed 'live' using an X-ray laser." ScienceDaily. www.sciencedaily.com/releases/2012/01/120123123355.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) — Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) — A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) — Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins