Featured Research

from universities, journals, and other organizations

Microscopy reveals 'atomic antenna' behavior in graphene

Date:
January 31, 2012
Source:
Oak Ridge National Laboratory
Summary:
Atomic-level defects in graphene could be a path forward to smaller and faster electronic devices. With unique properties and potential applications in areas from electronics to biodevices, graphene, which consists of a single sheet of carbon atoms, has been hailed as a rising star in the materials world. Now, a new study suggests that point defects, composed of silicon atoms that replace individual carbon atoms in graphene, could aid attempts to transfer data on an atomic scale by coupling light with electrons.

Electron microscopy at Oak Ridge National Laboratory has demonstrated that silicon atoms (seen in white) can act like "atomic antennae" in graphene to transmit an electronic signal at the atomic scale.
Credit: Image courtesy of Oak Ridge National Laboratory

Atomic-level defects in graphene could be a path forward to smaller and faster electronic devices, according to a study led by researchers at the Department of Energy's Oak Ridge National Laboratory.

With unique properties and potential applications in areas from electronics to biodevices, graphene, which consists of a single sheet of carbon atoms, has been hailed as a rising star in the materials world. Now, an ORNL study published in Nature Nanotechnology suggests that point defects, composed of silicon atoms that replace individual carbon atoms in graphene, could aid attempts to transfer data on an atomic scale by coupling light with electrons.

"In this proof of concept experiment, we have shown that a tiny wire made up of a pair of single silicon atoms in graphene can be used to convert light into an electronic signal, transmit the signal and then convert the signal back into light," said coauthor Juan-Carlos Idrobo, who holds a joint appointment at ORNL and Vanderbilt University.

An ORNL-led team discovered this novel behavior by using aberration-corrected scanning transmission electron microscopy to image the plasmon response, or optical-like signals, of the point defects. The team's analysis found that the silicon atoms act like atomic-sized antennae, enhancing the local surface plasmon response of graphene, and creating a prototypical plasmonic device.

"The idea with plasmonic devices is that they can convert optical signals into electronic signals," Idrobo said. "So you could make really tiny wires, put light in one side of the wire, and that signal will be transformed into collective electron excitations known as plasmons. The plasmons will transmit the signal through the wire, come out the other side and be converted back to light."

Although other plasmonic devices have been demonstrated, previous research in surface plasmons has been focused primarily on metals, which has limited the scale at which the signal transfer occurs.

"When researchers use metal for plasmonic devices, they can usually only get down to 5 -- 7 nanometers," said coauthor Wu Zhou. "But when you want to make things smaller, you always want to know the limit. Nobody thought we could get down to a single atom level."

In-depth analysis at the level of a single atom was made possible through the team's access to an electron microscope that is part of ORNL's Shared Research Equipment (ShaRE) User Facility.

"It is the one of only a few electron microscopes in the world that we can use to look at and study materials and obtain crystallography, chemistry, bonding, optical and plasmon properties at the atomic scale with single atom sensitivity and at low voltages," Idrobo said. "This is an ideal microscope for people who want to research carbon-based materials, such as graphene."

In addition to its microscopic observations, the ORNL team employed theoretical first-principles calculations to confirm the stability of the observed point defects.

Coauthors are ORNL's Jagjit Nanda; and Jaekwang Lee, Sokrates Pantelides and Stephen Pennycook, who are jointly affiliated with ORNL and Vanderbilt. The research was supported by DOE's Office of Science, which also sponsors ORNL's ShaRE User Facility; by the National Science Foundation; and by the McMinn Endowment at Vanderbilt University. The study used resources of the National Energy Research Scientific Computer Center, which is supported by DOE'S Office of Science.


Story Source:

The above story is based on materials provided by Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Wu Zhou, Jaekwang Lee, Jagjit Nanda, Sokrates T. Pantelides, Stephen J. Pennycook, Juan-Carlos Idrobo. Atomically localized plasmon enhancement in monolayer graphene. Nature Nanotechnology, 2012; DOI: 10.1038/nnano.2011.252

Cite This Page:

Oak Ridge National Laboratory. "Microscopy reveals 'atomic antenna' behavior in graphene." ScienceDaily. ScienceDaily, 31 January 2012. <www.sciencedaily.com/releases/2012/01/120131121243.htm>.
Oak Ridge National Laboratory. (2012, January 31). Microscopy reveals 'atomic antenna' behavior in graphene. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2012/01/120131121243.htm
Oak Ridge National Laboratory. "Microscopy reveals 'atomic antenna' behavior in graphene." ScienceDaily. www.sciencedaily.com/releases/2012/01/120131121243.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins