Featured Research

from universities, journals, and other organizations

Perfect nanotubes shine brightest: Researchers show how length, imperfections affect carbon nanotube fluorescence

Date:
January 31, 2012
Source:
Rice University
Summary:
A painstaking study has brought a wealth of new information about single-walled carbon nanotubes through analysis of their fluorescence. The researchers found that the brightest nanotubes of the same length show consistent fluorescence intensity, and the longer the tube, the brighter.

New work at Rice revealed how the fluorescent properties of specific types of nanotubes are influenced by the length of the tube and any imperfections. Weisman said those properties may be important to medical imaging and industrial applications.
Credit: Jason Streit/Rice University

A painstaking study by Rice University has brought a wealth of new information about single-walled carbon nanotubes through analysis of their fluorescence.

The current issue of the American Chemical Society journal ACS Nano features an article about work by the Rice lab of chemist Bruce Weisman to understand how the lengths and imperfections of individual nanotubes affect their fluorescence -- in this case, the light they emit at near-infrared wavelengths.

The researchers found that the brightest nanotubes of the same length show consistent fluorescence intensity, and the longer the tube, the brighter. "There's a rather well-defined limit to how bright they appear," Weisman said. "And that maximum brightness is proportional to length, which suggests those tubes are not affected by imperfections."

But they found that brightness among nanotubes of the same length varied widely, likely due to damaged or defective structures or chemical reactions that allowed atoms to latch onto the surface.

The study first reported late last year by Weisman, lead author/former graduate student Tonya Leeuw Cherukuri and postdoctoral fellow Dmitri Tsyboulski detailed the method by which Cherukuri analyzed the characteristics of 400 individual nanotubes of a specific physical structure known as (10,2).

"It's a tribute to Tonya's dedication and talent that she was able to make this large number of accurate measurements," Weisman said of his former student.

The researchers applied spectral filtering to selectively view the specific type of nanotube. "We used spectroscopy to take this very polydisperse sample containing many different structures and study just one of them, the (10,2) nanotubes," Weisman said. "But even within that one type, there's a wide range of lengths."

Weisman said the study involved singling out one or two isolated nanotubes at a time in a dilute sample and finding their lengths by analyzing videos of the moving tubes captured with a special fluorescence microscope. The movies also allowed Cherukuri to catalog their maximum brightness.

"I think of these tubes as fluorescence underachievers," he said. "There are a few bright ones that fluoresce to their full potential, but most of them are just slackers, and they're half as bright, or 20 percent as bright, as they should be.

"What we want to do is change that distribution and leave no tube behind, try to get them all to the top. We want to know how their fluorescence is affected by growth methods and processing, to see if we're inflicting damage that's causing the dimming.

"These are insights you really can't get from measurements on bulk samples," he said.

Graduate student Jason Streit is extending Cherukuri's research. "He's worked up a way to automate the experiments so we can image and analyze dozens of nanotubes at once, rather than one or two. That will let us do in a couple of weeks what had taken months with the original method," Weisman said.

The research was supported by the Welch Foundation, the National Science Foundation and Applied NanoFluorescence.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tonya K. Cherukuri, Dmitri A. Tsyboulski, R. Bruce Weisman. Length- and Defect-Dependent Fluorescence Efficiencies of Individual Single-Walled Carbon Nanotubes. ACS Nano, 2012; 6 (1): 843 DOI: 10.1021/nn2043516

Cite This Page:

Rice University. "Perfect nanotubes shine brightest: Researchers show how length, imperfections affect carbon nanotube fluorescence." ScienceDaily. ScienceDaily, 31 January 2012. <www.sciencedaily.com/releases/2012/01/120131122456.htm>.
Rice University. (2012, January 31). Perfect nanotubes shine brightest: Researchers show how length, imperfections affect carbon nanotube fluorescence. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2012/01/120131122456.htm
Rice University. "Perfect nanotubes shine brightest: Researchers show how length, imperfections affect carbon nanotube fluorescence." ScienceDaily. www.sciencedaily.com/releases/2012/01/120131122456.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins