Featured Research

from universities, journals, and other organizations

Perfect nanotubes shine brightest: Researchers show how length, imperfections affect carbon nanotube fluorescence

Date:
January 31, 2012
Source:
Rice University
Summary:
A painstaking study has brought a wealth of new information about single-walled carbon nanotubes through analysis of their fluorescence. The researchers found that the brightest nanotubes of the same length show consistent fluorescence intensity, and the longer the tube, the brighter.

New work at Rice revealed how the fluorescent properties of specific types of nanotubes are influenced by the length of the tube and any imperfections. Weisman said those properties may be important to medical imaging and industrial applications.
Credit: Jason Streit/Rice University

A painstaking study by Rice University has brought a wealth of new information about single-walled carbon nanotubes through analysis of their fluorescence.

The current issue of the American Chemical Society journal ACS Nano features an article about work by the Rice lab of chemist Bruce Weisman to understand how the lengths and imperfections of individual nanotubes affect their fluorescence -- in this case, the light they emit at near-infrared wavelengths.

The researchers found that the brightest nanotubes of the same length show consistent fluorescence intensity, and the longer the tube, the brighter. "There's a rather well-defined limit to how bright they appear," Weisman said. "And that maximum brightness is proportional to length, which suggests those tubes are not affected by imperfections."

But they found that brightness among nanotubes of the same length varied widely, likely due to damaged or defective structures or chemical reactions that allowed atoms to latch onto the surface.

The study first reported late last year by Weisman, lead author/former graduate student Tonya Leeuw Cherukuri and postdoctoral fellow Dmitri Tsyboulski detailed the method by which Cherukuri analyzed the characteristics of 400 individual nanotubes of a specific physical structure known as (10,2).

"It's a tribute to Tonya's dedication and talent that she was able to make this large number of accurate measurements," Weisman said of his former student.

The researchers applied spectral filtering to selectively view the specific type of nanotube. "We used spectroscopy to take this very polydisperse sample containing many different structures and study just one of them, the (10,2) nanotubes," Weisman said. "But even within that one type, there's a wide range of lengths."

Weisman said the study involved singling out one or two isolated nanotubes at a time in a dilute sample and finding their lengths by analyzing videos of the moving tubes captured with a special fluorescence microscope. The movies also allowed Cherukuri to catalog their maximum brightness.

"I think of these tubes as fluorescence underachievers," he said. "There are a few bright ones that fluoresce to their full potential, but most of them are just slackers, and they're half as bright, or 20 percent as bright, as they should be.

"What we want to do is change that distribution and leave no tube behind, try to get them all to the top. We want to know how their fluorescence is affected by growth methods and processing, to see if we're inflicting damage that's causing the dimming.

"These are insights you really can't get from measurements on bulk samples," he said.

Graduate student Jason Streit is extending Cherukuri's research. "He's worked up a way to automate the experiments so we can image and analyze dozens of nanotubes at once, rather than one or two. That will let us do in a couple of weeks what had taken months with the original method," Weisman said.

The research was supported by the Welch Foundation, the National Science Foundation and Applied NanoFluorescence.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tonya K. Cherukuri, Dmitri A. Tsyboulski, R. Bruce Weisman. Length- and Defect-Dependent Fluorescence Efficiencies of Individual Single-Walled Carbon Nanotubes. ACS Nano, 2012; 6 (1): 843 DOI: 10.1021/nn2043516

Cite This Page:

Rice University. "Perfect nanotubes shine brightest: Researchers show how length, imperfections affect carbon nanotube fluorescence." ScienceDaily. ScienceDaily, 31 January 2012. <www.sciencedaily.com/releases/2012/01/120131122456.htm>.
Rice University. (2012, January 31). Perfect nanotubes shine brightest: Researchers show how length, imperfections affect carbon nanotube fluorescence. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/01/120131122456.htm
Rice University. "Perfect nanotubes shine brightest: Researchers show how length, imperfections affect carbon nanotube fluorescence." ScienceDaily. www.sciencedaily.com/releases/2012/01/120131122456.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins