Featured Research

from universities, journals, and other organizations

Rearranging the cell's skeleton: Small molecules at the cell’s membrane enable cell movement

Date:
February 2, 2012
Source:
Johns Hopkins Medicine
Summary:
Cell biologists have identified key steps in how certain molecules alter a cell’s skeletal shape and drive the cell’s movement.

Ruffles form on cells to help them crawl. These ruffles were formed from glowing pieces of cell skeleton.
Credit: Courtesy of the Inoue lab.

Cell biologists at Johns Hopkins have identified key steps in how certain molecules alter a cell's skeletal shape and drive the cell's movement.

Related Articles


Results of their research, published in the December 13 issue of Science Signaling, have implications for figuring out what triggers the metastatic spread of cancer cells and wound-healing.

"Essentially we are figuring out how cells crawl," says Takanari Inoue, Ph.D., an assistant professor of cell biology and member of the Center for Cell Dynamics in the Johns Hopkins University School of Medicine's Institute for Basic Biomedical Sciences. "With work like ours, scientists can reveal what happens when cells move when they aren't supposed to."

Their new discovery highlights the role of the cell's skeleton, or cytoskeleton, in situations where "shape shifting" can rapidly change a cell's motion and function in response to differing environmental conditions.

When cell's such as fibroblasts, which gather to heal wounds, move from one place to another, its cytoskeleton forms ripple-like waves or ruffles across its surface that move towards the front of the cell and down, helping pull the cell across a surface. Researchers have shown that these ruffles form when a small molecule, PIP2, appears on the inside surface of the membrane at the front edge of a cell. Until now, however, they have been unable to recreate cell ruffles simply by directing PIP2 to the cell's front edge. Manipulations have instead led the cytoskeleton to form completely different structures, squiggles that zip across the inside of the cell like shooting stars across the sky, which the researchers call comets.

In their experiments, Inoue and his group looked for factors that determined whether a cell forms ruffles or comets. The researchers tried to create ruffles on the cell by sending in an enzyme to the cell membrane that converts another small molecule into PIP2. Using cytoskeleton building blocks marked to glow, the team used a microscope to watch the cytoskeleton assembling itself and saw that this approach caused the cytoskeleton to form comets, not the ruffles that the researchers had predicted.

The team suspected that comets formed because of a fall in levels of another small molecule used to make PIP2, PI4P.

To test this idea, the researchers tried to make ruffles on cells only by increasing PIP2 at the membrane, rather than changing the quantities of any other molecules. Using molecular tricks that hid existing PIP2 then revealed it, the researchers effectively increased the amount of available PIP2 at the membrane. This time the researchers saw ruffles.

"Now that we've figured out this part of how cells make ruffles, we hope to continue teasing apart the mechanism of cell movement to someday understand metastasis," says Inoue. "It will be interesting to manipulate other molecules at the cell surface to see what other types of cytoskeletal conformations we can control," he says.

Tasuku Ueno and Christopher Pohlmeyer of Johns Hopkins University School of Medicine and Björn Falkenburger of the University of Washington were additional authors of the study.

This study was funded by grants from the National Institutes of Health and the Japan Society for the Promotion of Science.


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. Ueno, B. H. Falkenburger, C. Pohlmeyer, T. Inoue. Triggering Actin Comets Versus Membrane Ruffles: Distinctive Effects of Phosphoinositides on Actin Reorganization. Science Signaling, 2011; 4 (203): ra87 DOI: 10.1126/scisignal.2002033

Cite This Page:

Johns Hopkins Medicine. "Rearranging the cell's skeleton: Small molecules at the cell’s membrane enable cell movement." ScienceDaily. ScienceDaily, 2 February 2012. <www.sciencedaily.com/releases/2012/02/120202092249.htm>.
Johns Hopkins Medicine. (2012, February 2). Rearranging the cell's skeleton: Small molecules at the cell’s membrane enable cell movement. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2012/02/120202092249.htm
Johns Hopkins Medicine. "Rearranging the cell's skeleton: Small molecules at the cell’s membrane enable cell movement." ScienceDaily. www.sciencedaily.com/releases/2012/02/120202092249.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How To: Mixed Green Salad Topped With Camembert Cheese

How To: Mixed Green Salad Topped With Camembert Cheese

Rumble (Jan. 26, 2015) — Learn how to make a mixed green salad topped with a pan-seared camembert cheese in only a minute! Music: Courtesy of Audio Network. Video provided by Rumble
Powered by NewsLook.com
Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) — Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
Husky Puppy Plays With Ferret

Husky Puppy Plays With Ferret

Rumble (Jan. 26, 2015) — It looks like this 2-month-old Husky puppy and the family ferret are going to be the best of friends. Look at how much fun they&apos;re having together! Credit to &apos;Vira&apos;. Video provided by Rumble
Powered by NewsLook.com
Scientists Model Flying, Walking Drone After Vampire Bats

Scientists Model Flying, Walking Drone After Vampire Bats

Buzz60 (Jan. 26, 2015) — Swiss scientists build a new drone that can both fly and walk, modeling it after the movements of common vampire bats. Jen Markham (@jenmarkham) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins