Featured Research

from universities, journals, and other organizations

New method makes culture of complex tissue possible in any lab

Date:
February 9, 2012
Source:
University of California - San Diego
Summary:
Scientists have developed a new method for making scaffolds for culturing tissue in three-dimensional arrangements that mimic those in the body. This advance allows the production of tissue culture scaffolds containing multiple structurally and chemically distinct layers using common laboratory reagents and materials.

Scientists at the University of California, San Diego have developed a new method for making scaffolds for culturing tissue in three-dimensional arrangements that mimic those in the body. This advance, published online in the journal Advanced Materials, allows the production of tissue culture scaffolds containing multiple structurally and chemically distinct layers using common laboratory reagents and materials.

Related Articles


According to the UC San Diego researchers, this process is more affordable and widely feasible than previous methods that required expensive equipment and expertise.

The new approach is remarkably simple: solutions of the components of each layer, including polymers, are mixed with varying concentrations of a common inert reagent to control density. The solutions are layered so that the difference in density segregates each solution, and then polymerized so that they form a gel. The structure of each layer can be altered by varying the concentration of polymers, and the discreteness of the transition between layers can be altered by allowing the solutions to diffuse.

Lead author Jerome Karpiak, graduate student in the UCSD Biomedical Sciences Program, said, "We're excited about the relevance of this method to tissue engineering. Since it offers such straightforward spatial control over structure and composition of stratified tissue scaffolds, including cell type and density, this technology could help the field move much faster." Tissues cultured in vitro to mimic those in the body can potentially provide an alternative to transplantation for injured or degenerated tissue.

"We believe this approach will vastly broaden the number of labs capable of culturing complex tissue," said Adah Almutairi, PhD, assistant professor at the UCSD Skaggs School of Pharmacy and Pharmaceutical Sciences, the Department of Nanoengineering and the Materials Science and Engineering Program at the UCSD Jacobs School of Engineering. "Because manipulation of structure and concentrations of signal molecules is much easier in this system than in intact organisms, it holds great potential to advance the study of development and disease." For example, this method may offer a novel approach to study how surrounding molecules affect the growth of axons in neurodevelopmental disorders.

Additional researchers included Yogesh Ner, PhD. Research was funded in part by the National Institutes of Health Director's New Innovator program and King Abdulaziz City of Science and Technology.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jerome V. Karpiak, Yogesh Ner, Adah Almutairi. Density Gradient Multilayer Polymerization for Creating Complex Tissue. Advanced Materials, 2012; DOI: 10.1002/adma.201103501

Cite This Page:

University of California - San Diego. "New method makes culture of complex tissue possible in any lab." ScienceDaily. ScienceDaily, 9 February 2012. <www.sciencedaily.com/releases/2012/02/120209172928.htm>.
University of California - San Diego. (2012, February 9). New method makes culture of complex tissue possible in any lab. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2012/02/120209172928.htm
University of California - San Diego. "New method makes culture of complex tissue possible in any lab." ScienceDaily. www.sciencedaily.com/releases/2012/02/120209172928.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins