Science News
from research organizations

Better tooth fillings? Materials that shrink when heated

Date:
February 10, 2012
Source:
National Institute for Materials Science
Summary:
New research holds promise for applications ranging from high-precision optical components to tooth fillings.
Share:
       
FULL STORY

New research holds promise for applications ranging from high-precision optical components to tooth fillings.

One common reason that people with fillings experience toothache is that their fillings expand at a different rate to the original tooth when, for example, drinking a hot drink. Contrary to intuition, however, not all materials expand when heated -- some actually contract. Recent research on these so-called negative thermal expansion (NTE) materials has led to the discovery of alloys exhibiting unexpectedly large thermal contraction.

Controlling the thermal expansion of composites is important for producing nanometer-scale electronic circuits, as well as the next-generation fuel cells and thermoelectric devices. An ability to combine NTE materials with 'normal' materials which expand upon heating ensures a reduction in thermal expansion in a composite material -- something that people with tooth fillings would appreciate. An example of such a composite is Invar, an iron-nickel alloy with a uniquely low coefficient of thermal expansion. As a result it is used where high dimensional stability is required, such as precision instruments, clocks or seismic creep gauges.

Koshi Takenaka at the Department of Crystalline Materials Science, Nagoya University in Japan works on NTE materials for practical applications. In the latest issue of Science and Technology of Advanced Materials he summarizes the physical mechanisms governing NTE with emphasis on recent developments.

Takenaka notes that, "NTE materials will expand our capability of thermal-expansion control, opening a new paradigm of materials science and technology thermal-expansion-adjustable composites." One challenge facing the scientist is that the addition of NTE materials to composites leads to undesirable instabilities at interfaces. New methods for producing stable interfaces between the host composite and NTE compensators are of critical importance. Nevertheless, the so-called 'one-component' materials -- such as manganese antiperovskites, zirconium vanadates, and hafnium tungstates -- exhibiting negligible thermal expansion offer a promising route towards achieving this goal.


Story Source:

The above post is reprinted from materials provided by National Institute for Materials Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Koshi Takenaka. Negative thermal expansion materials: technological key for control of thermal expansion. Science and Technology of Advanced Materials, 2012; 13 (1): 013001 DOI: 10.1088/1468-6996/13/1/013001

Cite This Page:

National Institute for Materials Science. "Better tooth fillings? Materials that shrink when heated." ScienceDaily. ScienceDaily, 10 February 2012. <www.sciencedaily.com/releases/2012/02/120210104756.htm>.
National Institute for Materials Science. (2012, February 10). Better tooth fillings? Materials that shrink when heated. ScienceDaily. Retrieved August 1, 2015 from www.sciencedaily.com/releases/2012/02/120210104756.htm
National Institute for Materials Science. "Better tooth fillings? Materials that shrink when heated." ScienceDaily. www.sciencedaily.com/releases/2012/02/120210104756.htm (accessed August 1, 2015).

Share This Page: