Featured Research

from universities, journals, and other organizations

Researchers develop better control for DNA-based computations

Date:
February 17, 2012
Source:
North Carolina State University
Summary:
A chemist has found a way to give DNA-based computing better control over logic operations. His work could lead to interfacing DNA-based computing with traditional silicon-based computing.

A North Carolina State University chemist has found a way to give DNA-based computing better control over logic operations. His work could lead to interfacing DNA-based computing with traditional silicon-based computing.

The idea of using DNA molecules -- the material genes are made of -- to perform computations is not new; scientists have been working on it for over a decade. DNA has the ability to store much more data than conventional silicon-based computers, as well as the potential to perform calculations in a biological environment -- inside a live cell, for example. But while the technology holds much promise, it is still limited in terms of the ability to control when and where particular computations occur.

Dr. Alex Deiters, associate professor of chemistry at NC State, developed a method for controlling a logic gate within a DNA-based computing system. Logic gates are the means by which computers "compute," as sets of them are combined in different ways to enable the computer to ultimately perform tasks like addition or subtraction. In DNA computing, these gates are created by combining different strands of DNA, rather than by a series of transistors. The drawback is that DNA computation events normally take place in a test tube, where the sequence of computation events cannot be easily controlled with spatial and temporal resolution. So while DNA logic gates can and do work, no one can tell them when or where to work, making it difficult to create sequences of computational events.

In a paper published in the Journal of the American Chemical Society, Deiters addressed the control problem by making portions of the input strands of DNA logic gates photoactivatable, or controllable by ultraviolet (UV) light. The process is known as photocaging. Deiters successfully photocaged several different nucleotides on a DNA logic gate known as an AND gate. When UV light was applied to the gate, it was activated and completed its computational event, showing that photoactivatable logic gates offer an effective solution to the "when and where" issues of DNA-based logic gate control.

Deiters hopes that using light to control DNA logic gates will give researchers the ability not only to create more complicated, sequential DNA computations, but also to create interfaces between silicon and DNA-based computers.

"Since the DNA gates are activated by light, it should be possible to trigger a DNA computation event by converting electrical impulses from a silicon-based computer into light, allowing the interaction of electrical circuits and biological systems," Deiters says. "Being able to control these DNA events both temporally and spatially gives us a variety of new ways to program DNA computers."


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alex Prokup, James Hemphill, Alexander Deiters. DNA Computation: A Photochemically Controlled AND Gate. Journal of the American Chemical Society, 2012; 120216152441006 DOI: 10.1021/ja210050s

Cite This Page:

North Carolina State University. "Researchers develop better control for DNA-based computations." ScienceDaily. ScienceDaily, 17 February 2012. <www.sciencedaily.com/releases/2012/02/120217145747.htm>.
North Carolina State University. (2012, February 17). Researchers develop better control for DNA-based computations. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2012/02/120217145747.htm
North Carolina State University. "Researchers develop better control for DNA-based computations." ScienceDaily. www.sciencedaily.com/releases/2012/02/120217145747.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: SpaceX Rocket Carries 3-D Printer to Space

Raw: SpaceX Rocket Carries 3-D Printer to Space

AP (Sep. 22, 2014) A SpaceX Rocket launched from Cape Canaveral, carrying a custom-built 3-D printer into space. NASA envisions astronauts one day using the printer to make their own spare parts. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins