Featured Research

from universities, journals, and other organizations

Technique creates piezoelectric ferroelectric nanostructures

Date:
February 21, 2012
Source:
Georgia Institute of Technology, Research Communications
Summary:
Researchers have developed a “soft template infiltration” technique for fabricating free-standing piezoelectrically active ferroelectric nanotubes and other nanostructures from PZT – a material that is attractive because of its large piezoelectric response.

Composite scanning electron microscope (SEM) image of PZT nanotube arrays and their piezoelectric response as measured by Band-Excitation PFM (BE-PFM).
Credit: Image courtesy of Ashley Bernal and Nazanin Bassiri-Gharb

Researchers have developed a "soft template infiltration" technique for fabricating free-standing piezoelectrically active ferroelectric nanotubes and other nanostructures from PZT -- a material that is attractive because of its large piezoelectric response. Developed at the Georgia Institute of Technology, the technique allows fabrication of ferroelectric nanostructures with user-defined shapes, location and pattern variation across the same substrate.

Related Articles


The resulting structures, which are 100 to 200 nanometers in outer diameter with thickness ranging from 5 to 25 nanometers, show a piezoelectric response comparable to that of PZT thin films of much larger dimensions. The technique could ultimately lead to production of actively-tunable photonic and phononic crystals, terahertz emitters, energy harvesters, micromotors, micropumps and nanoelectromechanical sensors, actuators and transducers -- all made from the PZT material.

Using a novel characterization technique developed at Oak Ridge National Laboratory, the researchers for the first time made high-accuracy in-situ measurements of the nanoscale piezoelectric properties of the structures.

"We are using a new nano-manufacturing method for creating three-dimensional nanostructures with high aspect ratios in ferroelectric materials that have attractive piezoelectric properties," said Nazanin Bassiri-Gharb, an assistant professor in Georgia Tech's Woodruff School of Mechanical Engineering. "We also leveraged a new characterization method available through Oak Ridge to study the piezoelectric response of these nanostructures on the substrate where they were produced."

The research was published online on Jan. 26, 2012, and is scheduled for publication in the print edition (Vol. 24, Issue 9) of the journal Advanced Materials. The research was supported by Georgia Tech new faculty startup funds.

Ferroelectric materials at the nanometer scale are promising for a wide range of applications, but processing them into useful devices has proven challenging -- despite success at producing such devices at the micrometer scale. Top-down manufacturing techniques, such as focused ion beam milling, allow accurate definition of devices at the nanometer scale, but the process can induce surface damage that degrades the ferroelectric and piezoelectric properties that make the material interesting.

Until now, bottom-up fabrication techniques have been unable to produce structures with both high aspect ratios and precise control over location. The technique reported by the Georgia Tech researchers allows production of nanotubes made from PZT (PbZr0.52Ti0.48O3) with aspect ratios of up to 5 to 1.

"This technique gives us a degree of control over the three-dimensional process that we've not had before," said Bassiri-Gharb. "When we did the characterization, we saw a size effect that until now had been observed only in thin films of this material at much larger size scales."

The ferroelectric nanotubes are especially interesting because their properties -- including size, shape, optical responses and dielectric characteristics -- can be controlled by external forces even after they are fabricated.

"These are truly smart materials, which means they respond to external stimuli such as applied electric fields, thermal fields or stress fields," said Bassiri-Gharb. "You can tune them to behave differently. Devices made from these materials could be fine tuned to respond to a different wavelength or to emit at a different wavelength during operation."

For example, the piezoelectric effect could permit fabrication of "nano-muscle" tubes that would act as tiny pumps when an electric field is applied to them. The fields could also be used to tune the properties of photonic crystals, or to create structures whose size can be altered slightly to absorb electromagnetic energy of different wavelengths.

In fabricating the nanotubes, Bassiri-Gharb and graduate student Ashley Bernal (currently an assistant professor at the Rose-Hulman Institute of Technology) began with a silicon substrate and spin-coated a negative electron-beam resist material onto it. A template was created using electron-beam lithography, and a thin layer of aluminum oxide was added on top of that using atomic layer deposition.

Next, the template was immersed under vacuum into an ultrasound bath containing a chemical precursor solution for PZT. The structures were pyrolyzed at 300 degrees Celsius, then annealed in a two-step heat treating process at 600 and 800 degrees Celsius to crystallize the material and decompose the polymer substrate. The process produced free-standing PZT nanotubes connected by a thin layer of the original aluminum oxide. Increasing the amount of chemical infiltration allows production of solid nanorods or nanowires instead of hollow nanotubes.

Though the researchers used electron beam lithography to create the template on which the structures were grown, in principle, many other chemical, optical or mechanical patterning techniques could be used for create the templates, Bassiri-Gharb noted.

In studies done in collaboration with researchers Sergei Kalinin and Alexander Tselev of the Center for Nanophase Materials Sciences at the Oak Ridge National Laboratory, the devices produced by the soft template process were analyzed with band-excitation piezoresponse force microscopy (BPFM). The technique allowed researchers to isolate properties of the AFM tip from those of the PZT sample, allowing analysis in sufficient detail to detect the size-scale piezoelectric effects.

"One of our most important observations is that these piezoelectric nanomaterials allow us to generate a factor of four to six increase in the extrinsic piezoelectric response compared to the use of thin films," said Baassiri-Gharb. "This would be a huge advantage in terms of manufacturing because it means we could get the same response from much smaller structures than we would have had to otherwise use."


Story Source:

The above story is based on materials provided by Georgia Institute of Technology, Research Communications. The original article was written by John Toon. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ashley Bernal, Alexander Tselev, Sergei Kalinin, Nazanin Bassiri-Gharb. Free-Standing Ferroelectric Nanotubes Processed via Soft-Template Infiltration. Advanced Materials, 2012; DOI: 10.1002/adma.201103993

Cite This Page:

Georgia Institute of Technology, Research Communications. "Technique creates piezoelectric ferroelectric nanostructures." ScienceDaily. ScienceDaily, 21 February 2012. <www.sciencedaily.com/releases/2012/02/120221165801.htm>.
Georgia Institute of Technology, Research Communications. (2012, February 21). Technique creates piezoelectric ferroelectric nanostructures. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2012/02/120221165801.htm
Georgia Institute of Technology, Research Communications. "Technique creates piezoelectric ferroelectric nanostructures." ScienceDaily. www.sciencedaily.com/releases/2012/02/120221165801.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins