Featured Research

from universities, journals, and other organizations

Disappearing and reappearing superconductivity surprises scientists

Date:
February 22, 2012
Source:
Carnegie Institution
Summary:
Superconductivity is a rare physical state in which matter is able to conduct electricity -- maintain a flow of electrons -- without any resistance. This phenomenon can only be found in certain materials at low temperatures, or can be induced under chemical and high external pressure conditions. Research to create superconductors at higher temperatures has been ongoing for two decades with the promise of significant impact on electrical transmission. New work demonstrates unexpected superconductivity in a type of compounds called iron selenium chalcogenides.

A view of structural unit of high-temperature cuprate- and iron selenide-based superconductors.
Credit: Courtesy of Xiao-Jia Chen

Superconductivity is a rare physical state in which matter is able to conduct electricity -- maintain a flow of electrons -- without any resistance. This phenomenon can only be found in certain materials at low temperatures, or can be induced under chemical and high external pressure conditions. Research to create superconductors at higher temperatures has been ongoing for two decades with the promise of significant impact on electrical transmission. New work from a team including Carnegie's Xiao-Jia Chen and Ho-kwang "Dave" Mao demonstrates unexpected superconductivity in a type of compounds called iron selenium chalcogenides.

Related Articles


Their work is published online by Nature on February 22.

A superconducting substance's electrical resistance disappears at a critical transition temperature, TC. The early conventional superconductors had to be cooled to extremely low temperatures -- below TC -- in order for electricity to flow freely. Then in the 1980s, scientists discovered a class of relatively high-temperature superconductors. Researchers have continued to study this phenomenon and look for it in an array of materials. It has been established that superconductivity can be affected by a substance's crystallographic structure, electronic charge, or the orbit of its electrons.

Recently scientists have discovered superconductivity in iron-based selenium chalcogenides. Chalcogenides are compounds that combine an element from group 16 on the periodic table (referring sulfur, selenium, tellurium) with another element, in this case iron. A selenide is a chemical compound containing selenium.

It was known that under pressure iron selenides become superconducters between -406 and -402 degrees Fahrenheit (30-32 K). But the research team, led equally by Liling Sun of the Chinese Academy of Sciences and Xiao-Jia Chen, discovered a second wave of superconductivity can be observed at higher pressures.

Working on an iron-based selenide the team observed a transition temperature that started at -400 degrees Fahrenheit (33 K) under about 16,000 times normal atmospheric pressure (1.6 GPa) and shifts to lower temperatures as the pressure increases, until it vanishes at about 89,000 times atmospheric pressure (9 GPa). But then superconducting reappears at pressures with a transition temperature of about -373 degrees Fahrenheit at around 122,000 times atmospheric pressure (12.4 GPa).

"These observations highlight the search of high-temperature superconductivity in complex structural and magnetic materials," Chen said. They confirmed these results with a variety of magnetic and electrical resistance measurements. They were also able to find reemerging superconductivity in another type of iron-based selenium chalcogenide, under very similar conditions.

They observed that the basic structure of these compounds was not changed under the extreme pressure and thus further research is needed to determine what is happening on a closer structural level. Chen stated that "our work will likely stimulate a great deal of future study, both experimental and theoretical, in order to clarify what causes this reemergence of superconductivity."


Story Source:

The above story is based on materials provided by Carnegie Institution. Note: Materials may be edited for content and length.


Journal Reference:

  1. Liling Sun, Xiao-Jia Chen, Jing Guo, Peiwen Gao, Qing-Zhen Huang, Hangdong Wang, Minghu Fang, Xiaolong Chen, Genfu Chen, Qi Wu, Chao Zhang, Dachun Gu, Xiaoli Dong, Lin Wang, Ke Yang, Aiguo Li, Xi Dai, Ho-kwang Mao, Zhongxian Zhao. Re-emerging superconductivity at 48 kelvin in iron chalcogenides. Nature, 2012; DOI: 10.1038/nature10813

Cite This Page:

Carnegie Institution. "Disappearing and reappearing superconductivity surprises scientists." ScienceDaily. ScienceDaily, 22 February 2012. <www.sciencedaily.com/releases/2012/02/120222132603.htm>.
Carnegie Institution. (2012, February 22). Disappearing and reappearing superconductivity surprises scientists. ScienceDaily. Retrieved December 17, 2014 from www.sciencedaily.com/releases/2012/02/120222132603.htm
Carnegie Institution. "Disappearing and reappearing superconductivity surprises scientists." ScienceDaily. www.sciencedaily.com/releases/2012/02/120222132603.htm (accessed December 17, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, December 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Buzz60 (Dec. 17, 2014) Jaguar unveils a virtual 360 degree windshield that may be the most futuristic automotive development yet. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins