Featured Research

from universities, journals, and other organizations

Molecule's role in cancer suggests new combination therapy

Date:
March 1, 2012
Source:
University of Illinois at Chicago
Summary:
Researchers have found that a molecule found at elevated levels in cancer cells seems to protect them from the "cell-suicide" that is usually triggered by chemotherapy or radiation.

Researchers at the University of Illinois at Chicago College of Medicine have found that a molecule found at elevated levels in cancer cells seems to protect them from the "cell-suicide" that is usually triggered by chemotherapy or radiation.

The study, published online in the journal PLoS One on Feb. 29, suggests that two common cancer-fighting strategies may have "tremendous synergy" if used in combination, says Andrei Gartel, UIC associate professor of biochemistry and molecular genetics and medicine and principal investigator on the study.

Damage to a cell's DNA can set in motion a cascade of signals that triggers programmed cell death, or apoptosis. Radiation therapy and many chemotherapy agents target and damage DNA somewhat selectively in rapidly dividing cells, making them useful in fighting cancer. But many cancer cells develop resistance over the course of treatment and block the suicide pathway.

Based on the observation that a protein molecule in cancer cells called FOXM1 is elevated following DNA damage, Gartel and his co-author sought to investigate whether FOXM1 might have a role in protecting cancer cells from apoptosis.

Using human cancer cells that were exposed to either chemicals or radiation to damage DNA, the researchers used a variety of techniques to decrease the levels of FOXM1 in these cells.

"We found a significant increase in DNA-damage-induced apoptosis in cells with diminished levels of FOXM1," Gartel said. The results were the same no matter what caused the DNA damage, or what method the researchers used to reduce FOXM1.

The researchers were able to show that FOXM1 short-circuits apoptosis by suppressing the activity of another protein, JNK, which otherwise stimulates cell death, and by turning up an anti-apoptosis protein called Bcl-2.

Besides the radiation and chemotherapy drugs long used in cancer treatment, a newer class of chemotherapy agents called proteasome inhibitors has been showing promise. All known proteasome inhibitors reduce levels of FOXM1, Gartel said.

By combining standard chemotherapy drugs with proteasome inhibitors -- some of which are already FDA-approved for cancer treatment -- the drugs' effectiveness may be improved, he said.

The study was supported by grants from the National Institutes of Health. Marianna Halasi, a UIC graduate student in biochemistry and molecular genetics, is the first author on the paper.


Story Source:

The above story is based on materials provided by University of Illinois at Chicago. Note: Materials may be edited for content and length.


Journal Reference:

  1. Marianna Halasi, Andrei L. Gartel. Suppression of FOXM1 Sensitizes Human Cancer Cells to Cell Death Induced by DNA-Damage. PLoS ONE, 2012; 7 (2): e31761 DOI: 10.1371/journal.pone.0031761

Cite This Page:

University of Illinois at Chicago. "Molecule's role in cancer suggests new combination therapy." ScienceDaily. ScienceDaily, 1 March 2012. <www.sciencedaily.com/releases/2012/03/120301143336.htm>.
University of Illinois at Chicago. (2012, March 1). Molecule's role in cancer suggests new combination therapy. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2012/03/120301143336.htm
University of Illinois at Chicago. "Molecule's role in cancer suggests new combination therapy." ScienceDaily. www.sciencedaily.com/releases/2012/03/120301143336.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com
Carpenter's Injury Leads To Hundreds Of 3-D-Printed Hands

Carpenter's Injury Leads To Hundreds Of 3-D-Printed Hands

Newsy (Apr. 14, 2014) Richard van As lost all fingers on his right hand in a woodworking accident. Now, he's used the incident to create a prosthetic to help hundreds. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins