Featured Research

from universities, journals, and other organizations

Gene therapy approach to grow blood vessels in ischemic limbs

Date:
March 6, 2012
Source:
Federation of American Societies for Experimental Biology
Summary:
Scientists can offer new hope that people with atherosclerotic disease may one day be able to avoid limb amputation related to ischemia. New research suggests that the delivery of genes for two molecules naturally produced by the body, called "PDGF-BB" and "VEGF" may successfully cause the body to grow new blood vessels that can save ischemic limbs.

A new research discovery by a team of Stanford and European scientists offers hope that people with atherosclerotic disease may one day be able to avoid limb amputation related to ischemia. A new research report appearing online in the FASEB Journal suggests that the delivery of genes for two molecules naturally produced by the body, called "PDGF-BB" and "VEGF" may successfully cause the body to grow new blood vessels that can save ischemic limbs.

Related Articles


"We hope that our findings will ultimately develop into a safe and effective therapy for the many patients, suffering from blocked arteries in the limbs, who are currently not adequately treated by surgery or drugs," said Helen M. Blau, Ph.D., a senior researcher involved in the work and Associate Editor of the FASEB Journal from the Baxter Laboratory for Stem Cell Biology at the Institute for Regenerative Medicine and Stem Cell Biology at Stanford. "This could help avoid the devastating consequences of limb amputations for both patients and their families."

To make this discovery, Blau and colleagues, including Andrea Banfi (now at Basel University), introduced the genes for PDGF-BB and VEGF into the muscles of mice, either independently or together. When high doses of VEGF alone were produced, they caused the growth of vascular tumors. When the two factors were produced in unbalanced amounts, tumor growth also occurred. When VEGF and PDGF were delivered in a fixed ratio relative to one another, however, no tumors occurred, and blood flow was restored to ischemic muscle tissue and damage repaired without any toxic effects. To achieve a "balanced" delivery of PDGF-BB and VEGF, scientists placed both genes in a single gene therapy delivery mechanism, called a "vector."

Although the report shows the feasibility of growing robust and safe new blood vessels that restore blood flow to diseased tissues, Blau points out that "there are multiple challenges to correcting peripheral vasculature disease by using proangiogenic gene therapy strategies. Two important challenges are what to deliver and how to get it to where it can have beneficial effects. Clinical success will require both delivering a gene therapy construct that encodes for effective angiogenic factors and ensuring that the sites of delivery are where the construct can have the greatest clinical benefit."

"This ingenious work, based on the latest techniques of molecular biology, tells us that it is possible to reinvigorate parts of our body that can't get enough blood to keep them going," said Gerald Weissmann, M.D., Editor-in-Chief of the FASEB Journal. "The next question is whether this approach will work in humans and exactly how to deliver the new treatment to places that need it the most."


Story Source:

The above story is based on materials provided by Federation of American Societies for Experimental Biology. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Banfi, G. von Degenfeld, R. Gianni-Barrera, S. Reginato, M. J. Merchant, D. M. McDonald, H. M. Blau. Therapeutic angiogenesis due to balanced single-vector delivery of VEGF and PDGF-BB. The FASEB Journal, 2012; DOI: 10.1096/fj.11-197400

Cite This Page:

Federation of American Societies for Experimental Biology. "Gene therapy approach to grow blood vessels in ischemic limbs." ScienceDaily. ScienceDaily, 6 March 2012. <www.sciencedaily.com/releases/2012/03/120306131404.htm>.
Federation of American Societies for Experimental Biology. (2012, March 6). Gene therapy approach to grow blood vessels in ischemic limbs. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2012/03/120306131404.htm
Federation of American Societies for Experimental Biology. "Gene therapy approach to grow blood vessels in ischemic limbs." ScienceDaily. www.sciencedaily.com/releases/2012/03/120306131404.htm (accessed October 30, 2014).

Share This



More Health & Medicine News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Fauci Says Ebola Risk in US "essentially Zero"

Fauci Says Ebola Risk in US "essentially Zero"

AP (Oct. 30, 2014) NIAID Director Anthony Fauci said the risk of Ebola becoming an epidemic in the U.S. is essentially zero Thursday at the Washington Ideas Forum. He also said an Ebola vaccine will be tested in West Africa in the next few months. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Nurse Defies Ebola Quarantine With Bike Ride

Nurse Defies Ebola Quarantine With Bike Ride

AP (Oct. 30, 2014) A nurse who vowed to defy Maine's voluntary quarantine for health care workers who treated Ebola patients followed through on her promise Thursday, leaving her home for an hour-long bike ride. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Microsoft Launches Fitness Band After Accidental Reveal

Microsoft Launches Fitness Band After Accidental Reveal

Newsy (Oct. 30, 2014) Microsoft accidentally revealed its upcoming fitness band on Wednesday, so the company went ahead and announced it. Video provided by Newsy
Powered by NewsLook.com
Studying Effects of Music on Dementia Patients

Studying Effects of Music on Dementia Patients

AP (Oct. 30, 2014) The University of Wisconsin-Milwaukee is studying the popular Music and Memory program to see if music, which helps improve the mood of Alzheimer's patients, can also reduce the use of prescription drugs for those suffering from dementia. (Oct. 30) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins