Featured Research

from universities, journals, and other organizations

How a bacterial pathogen breaks down barriers to enter and infect cells

Date:
March 8, 2012
Source:
Schepens Eye Research Institute
Summary:
Scientists have found for the first time that a bacterial pathogen can literally mow down protective molecules, known as mucins, on mucus membranes to enter and infect a part of the body.

“We are excited about this finding,” says Ilene Gipson, Ph.D. (above photo), the study’s principal investigator and a senior scientist at the Schepens.
Credit: Image courtesy of Schepens Eye Research Institute

Scientists from the Schepens Eye Research Institute, a subsidiary of Mass. Eye and Ear and affiliate of Harvard Medical School, have found for the first time that a bacterial pathogen can literally mow down protective molecules, known as mucins, on mucus membranes to enter and infect a part of the body. Their landmark study, published in the March 7, 2012 PLoS ONE, describes how they discovered that an "epidemic" strain of the bacterium Streptococcus pneumoniae, which causes conjunctivitis, secretes an enzyme to damage mucins and breach the mucosal membrane to infect and inflame the eye.

Related Articles


"We are excited about this finding," says Ilene Gipson, Ph.D., the study's principal investigator and a senior scientist at the Schepens. "Our discovery may ultimately lead to new ways of diagnosing, treating and preventing bacterial infections originating not only in the eye but in other parts of the body as well."

More than 80 percent of infections are contracted through the body's mucus membranes, which are the wet epithelial surfaces of the eye and the urogenital, respiratory, and gastrointestinal tracts of the body. The outer surface of all mucus membranes are protected by two types of mucin molecules -- one that is secreted and is in constant motion to sweep away trapped foreign material from the membrane surface, and the other that remains rooted in the membrane surface. The latter type of mucin molecules constitutes a physical shield that keeps potentially harmful substances from penetrating the membrane.

These membranes often encounter two types of bacterial pathogens. Some are "opportunistic." They sit on the membrane surface and only enter the tissue when there is trauma or injury that leaves a gap in the mucus membrane layer. An example of an opportunistic bacterium is Staphylococcus aureus that is often the cause of surgery related infections.

The other type of pathogen is non-opportunistic or "epidemic" and causes more invasive and aggressive infections such as occur in epidemic conjunctivitis caused by the strain of Streptococcus pneumoniae used in this study. These disease-causing bacteria enter the body even when there is no apparent injury to the protective layer. And, they can cause rapidly expanding and contagious disease.

Until the current PLoS ONE study, little has been known about how epidemic infection causing bacteria are able to cross through the mucin barrier. Experts in the study of mucins and determined to find a piece of this puzzle, the Schepens scientists hypothesized that "epidemic" bacteria must somehow remove the mucins themselves.

To test their hypothesis, the team grew "epidemic" conjunctivitis bacteria (a strain of streptococcus pneumoniae) in a culture. This bacteria causes an inflammation of the conjunctiva, the mucous membrane covering the white of the eyes and the inner side of the eyelids. They then applied the fluid that the bacteria were cultured in to cell lines that mimicked the eye's surface, including presence of intact mucins, and found that the membrane-anchored mucins were cut off and released from the surface of the cells. Removal of the mucins allowed the bacteria to enter the cells.

Using mass spectrometry, the researchers were then able to identify the enzyme, ZmpC, as the culprit. They confirmed their findings by knocking out the gene in the bacteria that produced this enzyme and demonstrated that the bacterium could no longer remove the mucins from the membrane.

According to Dr. Gipson, "This discovery is a major breakthrough in this long unsolved puzzle about how "epidemic" bacteria enter the body and has given us a new target for drugs that could even be used preventatively."

The next step in the research, according to Dr. Gipson, will be to determine if the method of enzymatically removing the surface mucins to gain entrance is used by other disease causing bacteria.

Other scientists who authored the study include: Bharathi Govindarajan, Balaraj B. Menon, Sandra Spurr-Michaud, Komal Rastogi, Michael S. Gilmore, and Pablo Argόeso.


Story Source:

The above story is based on materials provided by Schepens Eye Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bharathi Govindarajan, Balaraj B. Menon, Sandra Spurr-Michaud, Komal Rastogi, Michael S. Gilmore, Pablo Argόeso, Ilene K. Gipson. A Metalloproteinase Secreted by Streptococcus pneumoniae Removes Membrane Mucin MUC16 from the Epithelial Glycocalyx Barrier. PLoS ONE, 2012; 7 (3): e32418 DOI: 10.1371/journal.pone.0032418

Cite This Page:

Schepens Eye Research Institute. "How a bacterial pathogen breaks down barriers to enter and infect cells." ScienceDaily. ScienceDaily, 8 March 2012. <www.sciencedaily.com/releases/2012/03/120308101623.htm>.
Schepens Eye Research Institute. (2012, March 8). How a bacterial pathogen breaks down barriers to enter and infect cells. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2012/03/120308101623.htm
Schepens Eye Research Institute. "How a bacterial pathogen breaks down barriers to enter and infect cells." ScienceDaily. www.sciencedaily.com/releases/2012/03/120308101623.htm (accessed October 24, 2014).

Share This



More Plants & Animals News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) — Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) — Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) — One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) — Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins