Featured Research

from universities, journals, and other organizations

Artificially structured metamaterials may boost wireless power transfer

Date:
March 12, 2012
Source:
American Institute of Physics (AIP)
Summary:
More than one hundred years after the pioneering inventor Nikola Tesla first became fascinated with wireless energy transfer, the spread of mobile electronic devices has sparked renewed interest in the ability to power up without plugging in. Now researchers have proposed a way to enhance the efficiency of wireless power transfer systems by incorporating a lens made from a new class of artificial materials.

More than one hundred years after the pioneering inventor Nikola Tesla first became fascinated with wireless energy transfer, the spread of mobile electronic devices has sparked renewed interest in the ability to power up without plugging in. Now researchers from Duke University in Durham, N.C., and the Mitsubishi Electric Research Laboratories in Cambridge, Mass., have proposed a way to enhance the efficiency of wireless power transfer systems by incorporating a lens made from a new class of artificial materials.

Related Articles


When a changing electric current flows through a wire it generates a magnetic field, which in turn can induce a voltage across a physically separate second wire. Called inductive coupling, this electromagnetic phenomenon is already used commercially to recharge devices such as cordless electric toothbrushes and mobile phones, as well as in more recently developed experimental systems that can, for example, wirelessly power a light bulb across a distance of more than two meters. Finding a way to increase the inductive coupling in such systems could improve the power transfer efficiency. The research team from Duke and Mitsubishi hypothesized that a superlens, which can only be made from artificially-structured metamaterials, might be able to do the trick.

A superlens has a property call negative permeability. This means it can refocus a magnetic field from a source on one side of the lens to a receiving device on the other side. By running numerical calculations, the team determined that the addition of a superlens should increase system performance, even when a fraction of the energy was lost by passing through the lens.

When the researchers first began studying how a superlens might affect wireless energy transfer, they focused on lenses made from metamaterials that exhibited uniform properties in all directions. In their new study, accepted for publication in the American Institute of Physics' Journal of Applied Physics, the team also considered materials with magnetic anisotropy, meaning the magnetic properties are directionally dependent. Their results suggest that strong magnetic anisotropy of the superlens can offer further improvements to the system, such as reduction of the lens thickness and width.


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. Da Huang, Yaroslav Urzhumov, David R. Smith, Koon Hoo Teo, and Jinyun Zhang. Magnetic superlens-enchanced inductive coupling for wireless power transfer. Journal of Applied Physics, 2012 (in press)

Cite This Page:

American Institute of Physics (AIP). "Artificially structured metamaterials may boost wireless power transfer." ScienceDaily. ScienceDaily, 12 March 2012. <www.sciencedaily.com/releases/2012/03/120312192758.htm>.
American Institute of Physics (AIP). (2012, March 12). Artificially structured metamaterials may boost wireless power transfer. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2012/03/120312192758.htm
American Institute of Physics (AIP). "Artificially structured metamaterials may boost wireless power transfer." ScienceDaily. www.sciencedaily.com/releases/2012/03/120312192758.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com
Los Angeles Police To Receive 7,000 Body Cameras

Los Angeles Police To Receive 7,000 Body Cameras

Newsy (Dec. 17, 2014) Los Angeles Mayor Eric Garcetti announced the cameras will be distributed starting Jan. 1. Video provided by Newsy
Powered by NewsLook.com
Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Buzz60 (Dec. 17, 2014) Jaguar unveils a virtual 360 degree windshield that may be the most futuristic automotive development yet. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins