Featured Research

from universities, journals, and other organizations

Artificially structured metamaterials may boost wireless power transfer

Date:
March 12, 2012
Source:
American Institute of Physics (AIP)
Summary:
More than one hundred years after the pioneering inventor Nikola Tesla first became fascinated with wireless energy transfer, the spread of mobile electronic devices has sparked renewed interest in the ability to power up without plugging in. Now researchers have proposed a way to enhance the efficiency of wireless power transfer systems by incorporating a lens made from a new class of artificial materials.

More than one hundred years after the pioneering inventor Nikola Tesla first became fascinated with wireless energy transfer, the spread of mobile electronic devices has sparked renewed interest in the ability to power up without plugging in. Now researchers from Duke University in Durham, N.C., and the Mitsubishi Electric Research Laboratories in Cambridge, Mass., have proposed a way to enhance the efficiency of wireless power transfer systems by incorporating a lens made from a new class of artificial materials.

When a changing electric current flows through a wire it generates a magnetic field, which in turn can induce a voltage across a physically separate second wire. Called inductive coupling, this electromagnetic phenomenon is already used commercially to recharge devices such as cordless electric toothbrushes and mobile phones, as well as in more recently developed experimental systems that can, for example, wirelessly power a light bulb across a distance of more than two meters. Finding a way to increase the inductive coupling in such systems could improve the power transfer efficiency. The research team from Duke and Mitsubishi hypothesized that a superlens, which can only be made from artificially-structured metamaterials, might be able to do the trick.

A superlens has a property call negative permeability. This means it can refocus a magnetic field from a source on one side of the lens to a receiving device on the other side. By running numerical calculations, the team determined that the addition of a superlens should increase system performance, even when a fraction of the energy was lost by passing through the lens.

When the researchers first began studying how a superlens might affect wireless energy transfer, they focused on lenses made from metamaterials that exhibited uniform properties in all directions. In their new study, accepted for publication in the American Institute of Physics' Journal of Applied Physics, the team also considered materials with magnetic anisotropy, meaning the magnetic properties are directionally dependent. Their results suggest that strong magnetic anisotropy of the superlens can offer further improvements to the system, such as reduction of the lens thickness and width.


Story Source:

The above story is based on materials provided by American Institute of Physics (AIP). Note: Materials may be edited for content and length.


Journal Reference:

  1. Da Huang, Yaroslav Urzhumov, David R. Smith, Koon Hoo Teo, and Jinyun Zhang. Magnetic superlens-enchanced inductive coupling for wireless power transfer. Journal of Applied Physics, 2012 (in press)

Cite This Page:

American Institute of Physics (AIP). "Artificially structured metamaterials may boost wireless power transfer." ScienceDaily. ScienceDaily, 12 March 2012. <www.sciencedaily.com/releases/2012/03/120312192758.htm>.
American Institute of Physics (AIP). (2012, March 12). Artificially structured metamaterials may boost wireless power transfer. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/03/120312192758.htm
American Institute of Physics (AIP). "Artificially structured metamaterials may boost wireless power transfer." ScienceDaily. www.sciencedaily.com/releases/2012/03/120312192758.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins