Featured Research

from universities, journals, and other organizations

Barrier to faster graphene devices identified and suppressed

Date:
March 13, 2012
Source:
Vanderbilt University
Summary:
Physicists report that they have nailed down the source of the interference inhibiting the rapid flow of electrons through graphene-based devices and found a way to suppress it.

An image of a suspended graphene device made by a scanning probe microscope. The graphene sheet is the orange-colored layer suspended between six rectangular columns made of silicon dioxide and capped by gold.
Credit: A.K.M. Newaz / Bolotin Lab

These days graphene is the rock star of materials science, but it has an Achilles heel: It is exceptionally sensitive to its electrical environment.

This single-atom-thick honeycomb of carbon atoms is lighter than aluminum, stronger than steel and conducts heat and electricity better than copper. As a result, scientists around the world are trying to turn it into better computer displays, solar panels, touch screens, integrated circuits and biomedical sensors, among other possible applications. However, it has proven extremely difficult to reliably create graphene-based devices that live up to its electrical potential when operating at room temperature and pressure.

Now, writing in the Mar. 13 issue of the journal Nature Communications, a team of Vanderbilt physicists reports that they have nailed down the source of the interference inhibiting the rapid flow of electrons through graphene-based devices and found a way to suppress it. This allowed them to achieve record-levels of room-temperature electron mobility -- the measure of the speed that electrons travel through a material -- three times greater than those reported in previous graphene-based devices.

According to the experts, graphene may have the highest electron mobility of any known material. In practice, however, the measured levels of mobility, while significantly higher than in other materials like silicon, have been considerably below its potential.

"The problem is that, when you make graphene, you don't get just graphene. You also get a lot of other stuff," said Kirill Bolotin, assistant professor of physics, who conducted the study with Research Associate A.K.M. Newaz. "Graphene is extraordinarily susceptible to external influences so the electrical fields created by charged impurities on its surface scatter the electrons traveling through the graphene sheets, making graphene-based transistors operate slower and heat up more."

A number of researchers had proposed that the charged impurities that are omnipresent on the surface of graphene were the main culprits, but it wasn't completely certain. Also, several other theories had been advanced to explain the phenomenon.

"Our study shows without question that the charged crap is the problem and, if you want to make better graphene devices, it is the enemy that you need to fight," Bolotin said. At the same time, the experiment didn't find evidence supporting one of the alternative theories, that ripples in the graphene sheets were a significant source of electron scattering

In order to get a handle on the mobility problem, Bolotin's team suspended sheets of graphene in a series of different liquids and measured the material's electric transport properties. They found that graphene's electron mobility is dramatically increased when graphene is submerged in electrically neutral liquids that can absorb large amounts of electrical energy (have large dielectric constants). They achieved the record-level mobility of 60,000 using anisole, a colorless liquid with a pleasant, aromatic odor used chiefly in perfumery.

"These liquids suppress the electrical fields from the impurities, allowing the electrons to flow with fewer obstructions," Bolotin said.

Now that the source of the degradation in electrical performance of graphene has been clearly identified, it should be possible to come up with reliable device designs, Bolotin said.

According to the physicist, there is also a potential advantage to graphene's extraordinary sensitivity to its environment that can be exploited. It should make extremely sensitive sensors of various types and, because it is made entirely of carbon, it is biocompatible and so should be ideal for biological sensors.

University Distinguished Professor of Physics & Engineering Sokrates Pantelides and Research Associates Yevgeniy Puzyrev and Bin Wang contributed to the study. The research was funded by an award from the National Science Foundation.


Story Source:

The above story is based on materials provided by Vanderbilt University. The original article was written by David Salisbury. Note: Materials may be edited for content and length.


Journal Reference:

  1. A.K.M. Newaz, Yevgeniy S. Puzyrev, Bin Wang, Sokrates T. Pantelides, Kirill I. Bolotin. Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment. Nature Communications, 2012; 3: 734 DOI: 10.1038/ncomms1740

Cite This Page:

Vanderbilt University. "Barrier to faster graphene devices identified and suppressed." ScienceDaily. ScienceDaily, 13 March 2012. <www.sciencedaily.com/releases/2012/03/120313185234.htm>.
Vanderbilt University. (2012, March 13). Barrier to faster graphene devices identified and suppressed. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2012/03/120313185234.htm
Vanderbilt University. "Barrier to faster graphene devices identified and suppressed." ScienceDaily. www.sciencedaily.com/releases/2012/03/120313185234.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins