Featured Research

from universities, journals, and other organizations

Looking at quantum gravity in a mirror

Date:
March 18, 2012
Source:
University of Vienna
Summary:
Einstein's theory of gravity and quantum physics are expected to merge at the Planck-scale of extremely high energies and on very short distances. Now scientists have proposed a new quantum experiment using Planck-mass mirrors.

This is an illustration of a laser pulse used to probe a mirror for possible quantum gravitational effects.
Credit: Jonas Schmoele, VCQ, University of Vienna

Einstein's theory of gravity and quantum physics are expected to merge at the Planck-scale of extremely high energies and on very short distances. At this scale, new phenomena could arise. However, the Planck-scale is so remote from current experimental capabilities that tests of quantum gravity are widely believed to be nearly impossible. Now an international collaboration between the groups of Caslav Brukner and Markus Aspelmeyer at the University of Vienna and Myungshik Kim at Imperial College London has proposed a new quantum experiment using Planck-mass mirrors. Such an experiment could test certain predictions made by quantum gravity proposals in the laboratory.

The findings will be published this week in Nature Physics.

A long-standing challenge

The search for a theory that unifies quantum mechanics with Einstein's theory of gravity is one of the main challenges in modern physics. Quantum mechanics describes effects at the scale of single particles, atoms and molecules. Einstein's theory of gravity, on the other hand, is typically relevant for large masses. It is widely expected that phenomena stemming from a unified theory of quantum gravity will become evident only at the so-called Planck-scale of extremely high energies or extremely small distances. The Planck-length is 1.6 x 10-35 meters: This is so small that if one were to take this scale to be 1 meter, then an atom would be as large as the entire visible Universe! Similarly, the Planck-energy is so large that even the Large Hadron Collider in CERN only reaches an insignificantly tiny fraction of this energy, and a particle accelerator would need to be of astronomical size to get even close to the Planck-Energy. This scale is also described by the Planck-mass: A piece of dust weights about that much, which is truly heavy compared to single atoms, and quantum phenomena are typically considered unobservable for such masses. The Planck-scale is therefore so remote from current experimental capabilities that tests of quantum gravity proposals are widely believed to be nearly impossible. However, physicists have now found a way to probe some predictions of quantum gravity proposals in the laboratory by looking at quantum effects in Planck-mass quantum systems.

The sequence makes the difference

In quantum mechanics it is impossible to know where a particle is and how fast it is moving at the same time. Nevertheless, it is possible to make two subsequent measurements: a measurement of the particle's position followed by a measurement of its momentum, or vice-versa. In quantum physics the two different measurement sequences produces different experimental results. According to many theories of quantum gravity, this difference would be altered depending on the mass of the system, since the Planck-length puts a fundamental limit on measurements of distances. The team of physicists have now shown that although such modifications would be very small, they could be verified by using very massive quantum systems in the laboratory. Such an experiment could therefore test some of the proposals for quantum gravity.

Probing new theories with moving mirrors

The main idea is to use a laser pulse to interact four times with a moving mirror to probe exactly the difference between measuring first position after measuring momentum as compared to measuring momentum after measuring the position. By timing and engineering the interactions very precisely, the team have shown it is possible to map the effect onto the laser pulse and to read it out with quantum optical techniques. "Any deviation from the expected quantum mechanical result would be very exciting," says Igor Pikovski, the lead author of the work, "but even if no deviation is observed, the results can still help in the search for possible new theories." Some theoretical approaches to quantum gravity indeed predict different outcomes for the experiment. The scientists thus show how to probe these yet unexplored theories in a laboratory without using high-energy particle accelerators and without relying on rare astrophysical events.


Story Source:

The above story is based on materials provided by University of Vienna. Note: Materials may be edited for content and length.


Journal Reference:

  1. Igor Pikovski, Michael R. Vanner, Markus Aspelmeyer, M. S. Kim, Časlav Brukner. Probing Planck-scale physics with quantum optics. Nature Physics, 2012; DOI: 10.1038/NPHYS2262

Cite This Page:

University of Vienna. "Looking at quantum gravity in a mirror." ScienceDaily. ScienceDaily, 18 March 2012. <www.sciencedaily.com/releases/2012/03/120318144039.htm>.
University of Vienna. (2012, March 18). Looking at quantum gravity in a mirror. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2012/03/120318144039.htm
University of Vienna. "Looking at quantum gravity in a mirror." ScienceDaily. www.sciencedaily.com/releases/2012/03/120318144039.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) — The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) — Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) — The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins