Featured Research

from universities, journals, and other organizations

Materials Inspired by Mother Nature: One-Pound Boat That Could Float 1,000 Pounds

Date:
March 25, 2012
Source:
American Chemical Society (ACS)
Summary:
Combining the secrets that enable water striders to walk on water and give wood its lightness and strength yielded an amazing material so buoyant that, in everyday terms, a boat made from 1 pound of it could carry five kitchen refrigerators, about 1,000 pounds. It is one of the lightest solid substances in the world.

Cellulose, which gives wood and many products remarkable strength, is the main component of plant stems, leaves and roots.
Credit: Copyright Michele Hogan

Combining the secrets that enable water striders to walk on water and give wood its lightness and great strength has yielded an amazing new material so buoyant that, in everyday terms, a boat made from 1 pound of the substance could carry five kitchen refrigerators, about 1,000 pounds.

One of the lightest solid substances in the world, which is also sustainable, it was among the topics of a symposium in San Diego March 25 at the 243rd National Meeting & Exposition of the American Chemical Society, the world's largest scientific society. The symposium focused on an emerging field called biomimetics, in which scientists literally take inspiration from Mother Nature, probing and adapting biological systems in plants and animals for use in medicine, industry and other fields.

Olli Ikkala, Ph.D., described the new buoyant material, engineered to mimic the water strider's long, thin feet and made from an "aerogel" composed of the tiny nano-fibrils from the cellulose in plants. Aerogels are so light that some of them are denoted as "solid smoke." The nanocellulose aerogels also have remarkable mechanical properties and are flexible.

"These materials have really spectacular properties that could be used in practical ways," said Ikkala. He is with Helsinki University of Technology in Espoo, Finland. Potential applications range from cleaning up oil spills to helping create such products as sensors for detecting environmental pollution, miniaturized military robots, and even children's toys and super-buoyant beach floats.

Ikkala's presentation was among almost two dozen reports in the symposium titled, "Cellulose-Based Biomimetic and Biomedical Materials," that focused on the use of specially processed cellulose in the design and engineering of materials modeled after biological systems. Cellulose consists of long chains of the sugar glucose linked together into a polymer, a natural plastic-like material. Cellulose gives wood its remarkable strength and is the main component of plant stems, leaves and roots. Traditionally, cellulose's main commercial uses have been in producing paper and textiles -- cotton being a pure form of cellulose. But development of a highly processed form of cellulose, termed nanocellulose, has expanded those applications and sparked intense scientific research. Nanocellulose consists of the fibrils of nanoscale diameters so small that 50,000 would fit across the width of the period at the end of this sentence.

"We are in the middle of a Golden Age, in which a clearer understanding of the forms and functions of cellulose architectures in biological systems is promoting the evolution of advanced materials," said Harry Brumer, Ph.D., of Michael Smith Laboratories, University of British Columbia, Vancouver. He was a co-organizer of the symposium with J. Vincent Edwards, Ph.D., a research chemist with the Agricultural Research Service, U.S. Department of Agriculture in New Orleans, Louisiana. "This session on cellulose-based biomimetic and biomedical materials is really very timely due to the sustained and growing interest in the use of cellulose, particularly nanoscale cellulose, in biomaterials."

Ikkala pointed out that cellulose is the most abundant polymer on Earth, a renewable and sustainable raw material that could be used in many new ways. In addition, nanocellulose promises advanced structural materials similar to metals, such as high-tech spun fibers and films.

"It can be of great potential value in helping the world shift to materials that do not require petroleum for manufacture," Ikkala explained. "The use of wood-based cellulose does not influence the food supply or prices, like corn or other crops. We are really delighted to see how cellulose is moving beyond traditional applications, such as paper and textiles, and finding new high-tech applications."

One application was in Ikkala's so-called "nanocellulose carriers" that have such great buoyance. In developing the new material, Ikkala's team turned nanocellulose into an aerogel. Aerogels can be made from a variety of materials, even the silica in beach sand, and some are only a few times denser than air itself. By one estimate, if Michelangelo's famous statue David were made out of an aerogel rather than marble, it would be less than 5 pounds.

The team incorporated into the nanocellulose aerogel features that enable the water strider to walk on water. The material is not only highly buoyant, but is capable of absorbing huge amounts of oil, opening the way for potential use in cleaning up oil spills. The material would float on the surface, absorbing the oil without sinking. Clean-up workers, then, could retrieve it and recover the oil.

The American Chemical Society is a non-profit organization chartered by the U.S. Congress. With more than 164,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.


Story Source:

The above story is based on materials provided by American Chemical Society (ACS). Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society (ACS). "Materials Inspired by Mother Nature: One-Pound Boat That Could Float 1,000 Pounds." ScienceDaily. ScienceDaily, 25 March 2012. <www.sciencedaily.com/releases/2012/03/120325173010.htm>.
American Chemical Society (ACS). (2012, March 25). Materials Inspired by Mother Nature: One-Pound Boat That Could Float 1,000 Pounds. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/03/120325173010.htm
American Chemical Society (ACS). "Materials Inspired by Mother Nature: One-Pound Boat That Could Float 1,000 Pounds." ScienceDaily. www.sciencedaily.com/releases/2012/03/120325173010.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins