Featured Research

from universities, journals, and other organizations

Ripping electrons from their cores: Physicists mix two lasers to create light at many frequencies

Date:
March 28, 2012
Source:
University of California - Santa Barbara
Summary:
Physicists have seen the light, and it comes in many different colors. By aiming high- and low-frequency laser beams at a semiconductor, the researchers caused electrons to be ripped from their cores, accelerated, and then smashed back into the cores they left behind. This recollision produced multiple frequencies of light simultaneously.

Artist's rendition of electron-hole recollision. Near infrared (amber rods) and terahertz (yellow cones) radiation interact with a semiconductor quantum well (tiles). The near-ir radiation creates excitons (green tiles) consisting of a negative electron and a positive hole (dark blue tile at center of green tiles) bound in an atom-like state. Intense terahertz fields pull the electrons (white tiles) first away from the hole and then back towards it (electron paths represented by blue ellipses). Electrons periodically recollide with holes, creating periodic flashes of light (white disks between amber rods) that are emitted and detected as sidebands.
Credit: Peter Allen, UCSB

A team of physicists at UC Santa Barbara has seen the light, and it comes in many different colors. By aiming high- and low-frequency laser beams at a semiconductor, the researchers caused electrons to be ripped from their cores, accelerated, and then smashed back into the cores they left behind. This recollision produced multiple frequencies of light simultaneously.

Their findings appear in the current issue of the science journal Nature.

"This is a very remarkable phenomenon. I have never seen anything like this before," said Mark Sherwin, whose research group made the groundbreaking discovery. Sherwin is a professor of physics at UCSB and a co-author of the paper. He is also director of the campus's Institute for Terahertz Science and Technology.

When the high-frequency optical laser beam hits the semiconductor material -- in this case, gallium arsenide nanostructures -- it creates an electron-hole pair called an exciton. The electron is negatively charged, and the hole is positively charged, and the two are bound together by their mutual attraction. "The high-frequency laser creates electrons and holes," Sherwin explained. "The very strong, low-frequency free electron laser beam rips the electron away from the hole and accelerates it. As the low-frequency field oscillates, it causes the electron to come careening back to the hole." The electron has excess energy because it has been accelerated, and when it slams back into the hole, the recombined electron-hole pair emits photons at new frequencies.

"It's fairly routine to mix the lasers and get one or two new frequencies, Sherwin continued. "But to see all these different new frequencies, up to 11 in our experiment, is the exciting phenomenon. Each frequency corresponds to a different color."

In terms of real-world applications, the electron-hole recollision phenomenon has the potential to significantly increase the speed of data transfer and communication processes. One possible application involves multiplexing -- the ability to send data down multiple channels -- and another is high-speed modulation.

"Think of your cable Internet," explained Ben Zaks, a UCSB doctoral student in physics and the paper's lead author. "The cable is a bundle of fiber optics, and you're sending a beam with a wavelength that's approximately 1.5 microns down the line. But within that beam there are a lot of frequencies separated by small gaps, like a fine-toothed comb. Information going one way moves on one frequency, and information going another way uses another frequency. You want to have a lot of frequencies available, but not too far from one another."

The electron-hole recollision phenomenon does just that -- it creates light at new frequencies, with optimal separation between them.

The researchers utilize a free electron laser -- a building-size machine in UCSB's Broida Hall -- to produce the electron-hole recollisions, which they note is not practical for real-world applications. Theoretically, however, a transistor could be used in place of the free electron laser to produce the strong terahertz fields. "The transistor would then modulate the near infrared beam," Zaks continued. "Our data indicates that we are modulating the near infrared laser at twice the terahertz frequency. This is where we could really see this working to increase the speed of optical modulation, which is how you get information down a cable line."

The electron-hole recollision phenomenon creates many new avenues for research and exploration, Sherwin noted. "It is an interesting time because there are a lot of people who can participate in doing this kind of research," he said. "We have a unique tool -- a free electron laser -- which gives us a big advantage for exploring the properties of fundamental materials. We just put it in front of our laser beams and measure the colors of light going out. Now that we've seen this phenomenon, we can start doing the hard work of putting the pieces together on a chip."

In discussing the research team's discovery, Sherwin cited Michael Polanyi, the Hungarian scientist and science philosopher. "He talked about growing points in science, and I'm hoping this is going to be one of those, where a lot of people can use it as a foundation for going off in a lot of different directions," he said. "I want to continue working on it, but I'd like to see a lot of other people join in."

Also contributing to the research is the paper's second author, R.B. Liu of The Chinese University in Hong Kong. "This is an excellent example of the value of communicating with scientists from all over the globe," said Sherwin. "If we had never met, this research would not have happened."


Story Source:

The above story is based on materials provided by University of California - Santa Barbara. Note: Materials may be edited for content and length.


Journal Reference:

  1. B. Zaks, R. B. Liu, M. S. Sherwin. Experimental observation of electron–hole recollisions. Nature, 2012; 483 (7391): 580 DOI: 10.1038/nature10864

Cite This Page:

University of California - Santa Barbara. "Ripping electrons from their cores: Physicists mix two lasers to create light at many frequencies." ScienceDaily. ScienceDaily, 28 March 2012. <www.sciencedaily.com/releases/2012/03/120328142846.htm>.
University of California - Santa Barbara. (2012, March 28). Ripping electrons from their cores: Physicists mix two lasers to create light at many frequencies. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2012/03/120328142846.htm
University of California - Santa Barbara. "Ripping electrons from their cores: Physicists mix two lasers to create light at many frequencies." ScienceDaily. www.sciencedaily.com/releases/2012/03/120328142846.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins