Featured Research

from universities, journals, and other organizations

Photoreceptor transplant restores vision in mice

Date:
April 18, 2012
Source:
University College London
Summary:
Scientists have shown for the first time that transplanting light-sensitive photoreceptors into the eyes of visually impaired mice can restore their vision.

Transplanted photoreceptor cells (green) can integrate and make functional connections in the adult mouse retina.
Credit: UCL/Robin Ali

Scientists from the UCL Institute of Ophthalmology have shown for the first time that transplanting light-sensitive photoreceptors into the eyes of visually impaired mice can restore their vision.

Related Articles


The research, published in Nature, suggests that transplanting photoreceptors -- light-sensitive nerve cells that line the back of the eye -- could form the basis of a new treatment to restore sight in people with degenerative eye diseases.

Scientists injected cells from young healthy mice directly into the retinas of adult mice that lacked functional rod-photoreceptors. Loss of photoreceptors is the cause of blindness in many human eye diseases including age-related macular degeneration, retinitis pigmentosa and diabetes-related blindness.

There are two types of photoreceptor in the eye -- rods and cones. The cells transplanted were immature (or progenitor) rod-photoreceptor cells. Rod cells are especially important for seeing in the dark as they are extremely sensitive to even low levels of light.

After four to six weeks, the transplanted cells appeared to be functioning almost as well as normal rod-photoreceptor cells and had formed the connections needed to transmit visual information to the brain.

We've shown for the first time that transplanted photoreceptor cells can integrate successfully with the existing retinal circuitry and truly improve vision. We're hopeful that we will soon be able to replicate this success with photoreceptors derived from embryonic stem cells and eventually to develop human trials.

The researchers also tested the vision of the treated mice in a dimly lit maze. Those mice with newly transplanted rod cells were able to use a visual cue to quickly find a hidden platform in the maze whereas untreated mice were able to find the hidden platform only by chance after extensive exploration of the maze.

Professor Robin Ali at UCL Institute of Ophthalmology, who led the research, said: "We've shown for the first time that transplanted photoreceptor cells can integrate successfully with the existing retinal circuitry and truly improve vision. We're hopeful that we will soon be able to replicate this success with photoreceptors derived from embryonic stem cells and eventually to develop human trials.

"Although there are many more steps before this approach will be available to patients, it could lead to treatments for thousands of people who have lost their sight through degenerative eye disorders. The findings also pave the way for techniques to repair the central nervous system as they demonstrate the brain's amazing ability to connect with newly transplanted neurons."

Dr Rachael Pearson from UCL Institute of Ophthalmology and principal author, said: "We are now finding ways to improve the efficiency of cone photoreceptor transplantation and to increase the effectiveness of transplantation in very degenerate retina. We will probably need to do both in order to develop effective treatments for patients."

Dr Rob Buckle, head of regenerative medicine at the MRC said:"This is a landmark study that will inform future research across a wide range of fields including vision research, neuroscience and regenerative medicine. It provides clear evidence of functional recovery in the damaged eye through cell transplantation, providing great encouragement for the development of stem cell therapies to address the many debilitating eye conditions that affect millions worldwide."

The researchers demonstrated previously, in another study published in Nature, that it is possible to transplant photoreceptor cells into an adult mouse retina, provided the cells from the donor mouse are at a specific stage of development -- when the retina is almost, but not fully, formed. In this study they optimised the rod transplantation procedure to increase the number of cells integrated into the recipient mice and so were able to restore vision.

The research was funded by the MRC, the Wellcome Trust, the Royal Society, the British Retinitis Pigmentosa Society, Alcon Research Institute and The Miller's Trust. Robin Ali is a senior investigator of the National Institute for Health Research and carries out research at the NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology. Rachael Pearson is a Royal Society University Research Fellow.


Story Source:

The above story is based on materials provided by University College London. Note: Materials may be edited for content and length.


Journal Reference:

  1. R. A. Pearson, A. C. Barber, M. Rizzi, C. Hippert, T. Xue, E. L. West, Y. Duran, A. J. Smith, J. Z. Chuang, S. A. Azam, U. F. O. Luhmann, A. Benucci, C. H. Sung, J. W. Bainbridge, M. Carandini, K.-W. Yau, J. C. Sowden, R. R. Ali. Restoration of vision after transplantation of photoreceptors. Nature, 2012; DOI: 10.1038/nature10997

Cite This Page:

University College London. "Photoreceptor transplant restores vision in mice." ScienceDaily. ScienceDaily, 18 April 2012. <www.sciencedaily.com/releases/2012/04/120418135043.htm>.
University College London. (2012, April 18). Photoreceptor transplant restores vision in mice. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2012/04/120418135043.htm
University College London. "Photoreceptor transplant restores vision in mice." ScienceDaily. www.sciencedaily.com/releases/2012/04/120418135043.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins