Featured Research

from universities, journals, and other organizations

Graphene lenses: 2-D electron shepherds

Date:
April 18, 2012
Source:
American Institute of Physics
Summary:
Researchers discover that a deformed layer of graphene can focus electrons similar to the way an optical lens bends light.

Graphene, the one-atom-thick "wonder material" made of carbon, has another potential use in the world of high-speed electronics -- as a tool that can focus a stream of electrons similar to the way an optical lens focuses light. A new prototype reveals that a layer of graphene, when strained through stretching, can act as a two-dimensional lens for electrons.

The research, which is published in the American Institute of Physics' (AIP) journal Applied Physics Letters, was produced by an international group of researchers from the Karlsruhe Institute of Technology in Germany and the French National Center for Scientific Research (CRNS).

Graphene is an excellent conductor: electrons flow freely across its surface in straight lines. According to a previously proposed theory, highly strained graphene impedes the flow of electrons, slowing them down and altering their trajectory. Scientists believed this effect could be used to focus electrons to a fine point -- similar to the way an optical lens creates areas of refraction, or bending, to shepherd light to a point.

To create the prototype lens, the team of French and German researchers built a "deformed graphene carpet" that smoothly covers a series of hexagonal nano-holes in a silicon-carbide wafer. Areas of the graphene were strained as they adopted the shape of the holes in the wafer. The researchers found that they could control the focal length of a graphene lens by changing its geometry. Practical applications of this work include uses in high-speed electronics, where strained graphene could act as a transport medium for information exchange between different parts of a circuit. Unlike traditional information exchange, in which electrons flow through cables whose paths cannot cross without a short, the new method would allow electrons an unprecedented freedom of movement, similar to that of light in a vacuum.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. Gerhard, E. Moyen, T. Balashov, I. Ozerov, M. Portail, H. Sahaf, L. Masson, W. Wulfhekel, M. Hanbücken. A graphene electron lens. Applied Physics Letters, 2012; 100 (15): 153106 DOI: 10.1063/1.3701594

Cite This Page:

American Institute of Physics. "Graphene lenses: 2-D electron shepherds." ScienceDaily. ScienceDaily, 18 April 2012. <www.sciencedaily.com/releases/2012/04/120418135126.htm>.
American Institute of Physics. (2012, April 18). Graphene lenses: 2-D electron shepherds. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2012/04/120418135126.htm
American Institute of Physics. "Graphene lenses: 2-D electron shepherds." ScienceDaily. www.sciencedaily.com/releases/2012/04/120418135126.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins